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Abstract

The application of time series forecasting spans a wide range of domains, including weather,

finance, energy, and healthcare. Regardless of the field, forecasting plays a vital role in optimizing

resources and preparing for future challenges. One domain where forecasting is particularly

critical is supply chain management, where it is frequently used for demand forecasting. Demand

forecasting serves as the foundation for all supply chain planning and helps balance inventory

levels, reduce costs, and meet customer expectations.

This thesis explores the application of machine learning to demand forecasting at a case com-

pany that has recently experienced greater fluctuations in demand and increasing variations in

customer behavior. The limitations of the current approach have prompted the company to ex-

plore alternative methods, one of which being machine learning.

The thesis involves two experiments forecasting demand for two product families, A and B, using

historical demand data. The experimental setup was designed to reflect the company’s current

forecasting conditions. The process included data collection, preprocessing, analysis, feature

engineering, model development, and model evaluation. Three machine learning models were

developed: Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost),

and Long Short-Term Memory (LSTM).

Model performance was evaluated using Mean Square Error (MAE), Root Mean Square Error

(RMSE), and Symmetric Mean Absolute Percentage Error (SMAPE), and compared against a

12-month moving average baseline. The results show that LightGBM and XGBoost outperformed

the baseline for Product Family A, while none of the models outperformed the baseline for Product

Family B. The thesis concludes that further investigation and refinements are needed before the

models can be deployed into production.
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1 Introduction

1 Introduction

This chapter introduces the subject of the thesis and outlines its scope. It includes

background information, a description of the problem, an overview of the case company,

the objective, research questions, and delimitations. The chapter concludes with an

outline of the thesis structure.

1.1 Background

The desire to predict the future has long been fundamental to human nature. Anticipat-

ing threats and opportunities enabled early humans to make informed decisions critical

for survival [33]. What was once a necessity for survival has evolved into a driving

force behind many scientific and technological advancements. Humans have continu-

ously tried to develop methods to anticipate outcomes and minimize uncertainty, from

weather forecasting to financial market predictions. In modern times, Machine Learning

(ML) and Artificial Intelligence (AI) have significantly improved predictive accuracy,

allowing organizations to make data-driven decisions. Regardless of the field, forecast-

ing is crucial in optimizing resources and preparing for future challenges. With the

rapid increase of computational power and data availability, more advanced predictive

models have been developed, offering organizations the ability to leverage their data to

anticipate future needs with high credibility [38]. Although the landscape in predictive

modeling is constantly changing, the goal remains unchanged: The better predictions,

the better preparations.

One area where accurate forecasting is particularly critical is Supply Chain Manage-

ment (SCM). SCM is the management of the flow of goods and services and includes

all processes that transform raw materials into final products [40]. However, effective

coordination of supply chain processes requires extensive planning. Procurement deci-

sions depend on production levels, which in turn rely on anticipated delivery volumes,

both of which are ultimately driven by demand.

All processes within a supply chain can be divided into two categories, push processes

and pull processes. Push processes are defined as processes executed in anticipation of
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1 Introduction

predicted demand, whereas pull processes are defined as processes executed in response

to actual demand. For push processes, managers must plan activity levels for operations

such as procurement, production, transportation, or other scheduled activities. For pull

processes, the focus is on preparing the capacity and inventory levels to be available. In

both scenarios, the first step for a manager is to forecast customer demand accurately

[7].

As a result, demand forecasting serves as the foundation for all supply chain planning.

Demand forecasting holds a crucial role in SCM as it directly influences key operational

and strategic decisions. Accurate prediction helps balance inventory levels, minimize

costs and meet customer expectations. In contrast, poor accuracy can result in overpro-

duction, stockouts, and increased holding costs, ultimately yielding financial losses and

diminished customer satisfaction [37].

1.2 Problem Description

Traditional statistical forecasting methods, such as ARIMA and Exponential Smoothing,

have long been used to predict future demand based on historical data. While effective

in simpler contexts, these models often fall short in capturing the growing complexity

of modern supply chains, where demand is shaped by numerous dynamic factors [12].

With the increasing availability of data and computational power, ML methods have

emerged as a powerful alternative. ML models can handle large datasets, uncover com-

plex patterns, and adapt to changing demand conditions in ways that traditional models

cannot. By leveraging ML-based forecasting techniques, businesses can improve pre-

dictive accuracy, improve decision making, and achieve greater resilience in supply

chain operations [32]. This shift highlights the growing necessity of integrating data-

driven approaches in demand forecasting.

Currently, the demand forecasting process in the case company is not data-driven. De-

mand planners do not utilize any established technical tools for forecasting but instead

rely on a combination of intuition, experience, communication with customers, and Ex-

cel calculations. Recently, the company has experienced greater fluctuations in demand

2



1 Introduction

and increasing variations in customer behavior. As demand patterns have become more

complex, forecasting has become increasingly challenging. The limitations of the cur-

rent approach have prompted the company to explore alternative methods, one of which

is ML.

1.3 Case Company

This thesis is conducted in collaboration with the consultancy firm Frontit, with the

case study situated at one of their partners, CrossControl. CrossControl is a Swedish

business-to-business company that develops and manufacturers advanced electronic so-

lutions for industrial machines and vehicles. The company supports Original Equipment

Manufacturers and System Suppliers in making industrial vehicles smarter, safer, and

more productive. CrossControl offers a comprehensive platform for machine intelli-

gence, comprising a wide portfolio of hardware, software, and services. Its customers

are operating in end markets such as agriculture, construction, forestry, material han-

dling, mining, cargo transport, and utility vehicles. CrossControl specializes in products

designed to operate under demanding environmental conditions and applications with

high reliability and quality requirements.

Since CrossControl’s customers operate across a diverse range of end markets, its busi-

ness is sensitive to a broad spectrum of external economic and industry specific factors.

For example, an increase in forestry activity may boost demand, while a downturn in

mining can lead to reduced orders. Exposure to multiple and sometimes opposing mar-

ket dynamics complicates demand forecasting. Moreover, the effects of such external

factors are often delayed, meaning that their impact on CrossControl’s operations may

not be immediately observable. In addition, the company faces long procurement lead

times for critical components, often requiring orders to be placed several months be-

fore their own product delivery. As a result, demand forecasting must be performed

well in advance to inform purchasing decisions, which inherently increases uncertainty.

The further into the future a forecast attempts to predict, the less certain and reliable it

becomes.
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1.4 Objective

The objective of the thesis is to explore how ML can be applied to demand forecasting

in a case company. Various state of the art ML forecasting models will be developed

and evaluated. Since there is no established forecasting method at the case company,

historical forecasts are not available for comparison. Therefore, the performance of the

developed ML models will be evaluated against a baseline model.

1.5 Research Questions

To achieve the objective, this thesis will focus on addressing the following research

questions:

1. How does the performance of ML models compare to that of a baseline model in

forecasting the demand for Product Family A?

2. How does the performance of ML models compare to that of a baseline model in

forecasting the demand for Product Family B?

1.6 Delimitations

The raw data provided by CrossControl is confidential and will therefore not be dis-

closed in this thesis. Real names of product families will be anonymized, referred to as

”Product Family A” and ”Product Family B”. Furthermore, since all ML models will be

trained exclusively on data from the case company, the generalizability of the findings

will be limited to this context.
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1.7 Outline

This thesis is structured to follow a logical progression from the initial problem for-

mulation to the final conclusions. Chapter 1 introduces the reader to the topic, time

series forecasting using ML, and defines the scope by outlining the problem statement,

objective, research questions, and delimitations. Chapter 2 lays the theoretical founda-

tion by introducing key concepts and terminology related to the topic. Additionally, this

chapter presents the ML models developed in the thesis. Chapter 3 reviews related work,

emphasizing the shift from traditional statistical methods to ML models in demand fore-

casting. Chapter 4 details the methodology, including the experimental design and the

approach to address the research questions. Chapter 5 describes the experimental setup,

and Chapter 6 presents the results. Chapter 7 provides an analysis and discussion of the

findings. Finally, Chapter 8 concludes the thesis with a summary of key insights, and

Chapter 9 offers recommendations for future research.

5



2 Theory

2 Theory

This chapter presents the theoretical foundation relevant to the thesis. It covers key

concepts related to time series forecasting, as well as the application of ML in this

context. The aim is to equip the reader with the necessary background to understand

the methodological choices made in the thesis.

2.1 Time Series Forecasting

Time series forecasting is the practice of predicting future values of a time series using

the past values and/or other related variables [27]. One example of time series forecast-

ing is estimating next month’s demand using data from the past five years.

2.2 Time Series Data

Most forecasting problems involve the use of time series data. Time series data refers to

a chronologically ordered set of observations that track variations in a specific variable

over time [34]. These observations are recorded at consistent, evenly spaced time inter-

vals, a characteristic known as granularity. The granularity level defines the frequency

at which data points are recorded and determines the time interval between consecutive

observations in a time series [20]. The appropriate level of granularity is dictated by the

nature of the forecasting problem and can vary across different time scales. Common

examples of granularity levels include hourly, daily, weekly, and monthly intervals.

2.3 Univariate and Multivariate Time Series Data

Time series data can be either univariate or multivariate. The distinction between them

lies in the number of variables being tracked over time. A univariate time series consists

of a single time-dependent variable, whereas multivariate times series includes two or

more time-dependent variables [18].
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2 Theory

For this thesis, a univariate time series would only consider past demand to predict

future demand. Here, the model relies on patterns like trend, seasonality, and cycles

within the historical demand itself.

2.4 Forecast Horizon

The forecast horizon represents the time into the future for which predictions are re-

quired. Its length is determined by the nature of the problem and the operational con-

straints of the system. For example, in production planning, a demand forecast for a

specific product may need to be generated on a monthly basis. Given the time required

to adjust production schedules, secure raw materials and components from suppliers,

and coordinate the distribution of finished products to customers or storage facilities, a

forecast horizon of three months may be necessary [34].

2.5 Forecast Interval

The forecast interval refers to the frequency at which new forecasts are generated. Using

the production planning example again, demand may be forecasted on a monthly basis

for a forecast horizon extending up to three months. In this case, a new forecast is pre-

pared each month, making the forecast interval one month. When the forecast horizon

remains set at T time steps and the forecast is revised at each time step, an adaptive ap-

proach known as Rolling or Moving Horizon is employed. Using this method, forecasts

for T − 1 time steps within the horizon are updated, and a new forecast is computed

for the most recent time step, T . The rolling horizon approach ensures that the predic-

tion remains dynamic and responsive to new data, making it widely used when forecast

horizons extend over multiple time steps [34].

2.6 Single Step and Multistep Predictions

Time series forecasting can be performed using either a single step or a multistep ap-

proach. Single step forecasting predicts the value at the next time step immediately
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2 Theory

following the last observed data point. In contrast, multistep forecasting estimates val-

ues n time steps into the future [20].

Several approaches exist for multistep forecasting. One method is Direct Multistep

Forecasting, which involves training a separate model for each forecasting time step

[20]. For example, when predicting demand for the next two months and assuming

monthly granularity, one model would be trained to forecast demand for the first month,

and a separate model would be trained to predict demand for the second month.

Another approach is Recursive Multistep Forecasting, where a single model is used

iteratively. The model predicts the next time step, and that prediction is then fed back

as input to generate subsequent forecasts [20]. For instance, a single step forecasting

model would first predict demand for the next month, and this forecast would then serve

as input to estimate demand for the second month.

A third approach, Direct Recursive Hybrid Forecasting, combines elements of both prior

methods. Distinct models are trained for each future time step, but each model incor-

porates predictions from prior time steps as input [20]. For example, when forecasting

demand for two months, two models are built, and the output from the first model is

used as input for the second model.

Finally, Multiple Output Forecast uses a single model capable of predicting the entire

sequence at once. Instead of generating forecasts step by step, the model is trained

to predict multiple future time steps in a single computation [20]. For instance, a sin-

gle model could be developed to estimate demand for both the first and second month

simultaneously.

Approaches that rely on previous forecasts to generate subsequent predictions are prone

to error accumulation. Small errors early in the process can accumulate and significantly

impact the accuracy of later predictions, especially when n is large. In contrast, the

multiple output forecasting method is not prone to error accumulation. However, models

following this approach have greater difficulty learning complex patterns [20].

8
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2.7 Time Series Cross Validation

Cross validation is a widely used model evaluation technique in ML for assessing how

well a model generalizes to data it has not seen during training. The primary goal is to

prevent overfitting and obtain a more reliable estimate of the model’s performance [11].

Overfitting occurs when a ML model becomes too closely tailored to training data and

loses its ability to generalize. The model learns not only the underlying patterns but also

the noise. As a result, the model will achieve good performance on training data, but

poor performance on new and unseen test data [17]. Cross validation simulates multiple

rounds of training and testing using the same dataset. This is achieved by partitioning

the dataset into several subsets, or folds, which is why the method is commonly referred

to as K-fold Cross Validation [11].

”Cross-validation is a widely used model evaluation technique in ML for assessing how

well a model generalizes to data it has not seen during training. Its primary goal is

to prevent overfitting and provide a more reliable estimate of the model’s performance.

Overfitting occurs when a model becomes too closely tailored to the training data, learn-

ing not only the underlying patterns but also the noise. As a result, the model performs

well on the training set but poorly on new, unseen data. Cross-validation simulates mul-

tiple rounds of training and testing using the same dataset. This is done by partitioning

the data into several subsets, or folds, which is why the method is commonly referred to

as K-fold Cross-Validation [11].”

Figure 1 illustrates the concept using 4-fold cross validation (K = 4). In this case, the

data is randomly divided into four folds of equal size. Since there are four folds, the

process involves four iterations. In each iteration, one fold is used as the test set while

the remaining three serve as the training set. The model is trained and evaluated in each

iteration, and the performance metric is recorded. After all four folds have been used

as the test set once, the cross validation process ends, and the results are averaged to

produce a reliable performance estimate.

However, standard K-fold cross validation is not suitable for time series data. Unlike

independent and identically distributed data, time series observations are temporally

ordered, which must be preserved during training and testing. K-fold cross validation
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Figure 1 Illustration of K-fold cross validation (K = 4).

randomly shuffles the data, which breaks temporal dependencies and can lead to data

leakage, where future values are used to predict past values [11].

Therefore, standard K-fold cross validation is incompatible with time series data. In-

stead, several alternative cross validation strategies have been developed specifically for

time series. One such method is known as the Rolling Forecast Origin, also referred to

as Expanding Window Cross Validation. This thesis adopts this approach, and from this

point onward, it will be referred to as Time Series Cross Validation.

Figure 2 illustrates the concept using time series cross validation. As shown in the

figure, this approach simulates multiple rounds of training and testing, similar to K-fold

cross validation, but while preserving the temporal order of the data. The training set

expands with each iteration, and the process continues until the entire dataset has been

utilized.

2.8 Approaches to Time Series Forecasting

Time series forecasting can be performed using either a Local or a Global approach,

depending on how models are trained across multiple time series. In the local approach,

a separate model is trained for each individual time series and as a result, each model

learns patterns specific to its own series. In contrast, the global approach involves train-

10
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Figure 2 Illustration of 4-fold times series cross validation.

ing a single model on all time series simultaneously [39]. This allows the model to

learn common patterns shared across series while also distinguishing between them us-

ing metadata such as unique time series identifiers. Consequently, a global model can

utilize information from all available time series to generate forecasts for individual

time series. This thesis exclusively adopts the local approach.

For example, consider the task of forecasting demand per product for a company. A

local approach would involve training one model per product, while a global approach

would train a single model using demand data from all products collectively. This ex-

ample is illustrated in Figure 3.

Figure 3 Illustration of a local and global approach to time series forecasting.
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2.9 Decision Trees

The first two models developed in this thesis are Light Gradient Boosting Machine

(LightGBM) and Extreme Gradient Boosting (XGBoost), both of which are implemen-

tations of Gradient Boosting Decision Trees (GBDTs). A decision tree is a supervised

learning model used for both classification and regression tasks. Supervised learning is

a type of ML in which the model is trained on labeled data, meaning that both the input

features and the corresponding output values are known. The goal of the training is

for the model to learn the relationship between inputs and outputs, allowing it to make

accurate predictions on new, unseen data. A classification task involves predicting a dis-

crete category, such as determining whether demand will increase, decrease, or remain

stable. Regression tasks on the other hand, involves predicting continuous numerical

values [21]. As in the context of this thesis, a regression task could involve predicting

the expected quantity of product demand for the upcoming months. Before delving into

the technical details of GBDTs it is useful to first understand how decision tree models

make predictions and how they learn from data.

2.9.1 Making Predictions With Decision Trees

Decision trees are often referred to as rule-based models because they rely on a series of

if-then conditions to define their structure. These rules are organized in a graph structure

known as a binary decision tree (see Figure 4a). The decision tree recursively divides the

input space into multiple non-overlapping regions (see Figure 4b), where each region

corresponds to a leaf node. In each region, a constant value is used for the prediction

[21].

Consider a case with two numerical input features x = [x1 x2]
T and an output variable

y. The task is to use an existing decision tree to predict ŷ(x∗), where x∗ represents a test

input and ŷ(x∗) denotes the predicted output corresponding to that test input.

The structure and rules defining the decision tree are illustrated in Figure 4. To generate

a prediction for the test input [x∗1 x∗2]
T , the process begins at the top of the tree, known

as the root node. At each internal node, a condition is evaluated. If the condition is true,
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meaning if x∗2 < 4.0, the path continues down the left branch. Consequently, if the

condition is false, the path follows the right branch. If the path reaches another internal

node, the condition associated with that node is checked, and the left or right branch is

selected accordingly. The procedure is repeated until the the path terminates at a leaf

node, which assigns a constant prediction value. In classification tasks, the prediction

is categorical and typically corresponds to the majority class among the samples in the

leaf node. In regression tasks, the prediction is numerical and usually represents the

average of the target values from the training data points assigned to the leaf node.

(a) A binary decision tree with two inter-

nal nodes (including the root) and three leaf

nodes.

(b) Corresponding region partitioning of

the two-dimensional input space R.

Figure 4 Illustration of a binary decision tree alongside its corresponding partitioning

of input space. Each region (R1, R2, R3) corresponds to a leaf node, and the boundaries

between regions reflect the split conditions applied at the internal nodes of the tree.

2.9.2 Learning With Decision Trees

The learning (or training) of a decision tree involves recursively dividing the input space

into smaller, more homogeneous regions (denoted as R1, R2, and R3 in Figure 4b).

The goal is to find splits that group similar outcomes together based on the the target

variable. Recursive splitting means that decision rules are determined sequentially, one

at a time. The process begins at the root node and proceeds from the top down, with each

split selected without knowledge of how the full tree will eventually look. The learning

process starts with the entire training dataset and the full input space considered as a
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single region [21].

When determining the first split at the root node (e.g., x∗2 < 4.0), the objective is to

find the decision rule that best separates the training data based on the target variable.

Once the split is selected, it is fixed, and the same procedure is applied recursively to

each resulting subregion. At every step in the learning process, the algorithm evaluates

all possible features and thresholds. Each candidate split is assessed according to how

well it separates the training data according to a task-specific criterion defined by the

user. These criteria differ between classification and regression, and multiple options

exist within each category [21].

The final result is a tree structure where each internal node represents a decision rule,

each branch corresponds to a path taken based on that rule, and each leaf node repre-

sents a final prediction. Conceptually, the decision tree has learned to approximate the

relationship between inputs and outputs by dividing the input space into smaller regions

and assigning each region a fixed output based on the training data it contains.

2.9.3 Gradient Boosting Decision Trees

As previously mentioned, LightGBM and XGBoost are implementations of GBDTs.

Gradient boosting is an ensemble ML technique that combines a collection of weak

learners into a single stronger learner. The weak learners are typically decision trees,

and thus, models like LightGBM and XGBoost are commonly referred to as GBDTs.

At its core, these models build an ensemble of models sequentially, where each new tree

tries to correct the residuals (errors) of the previous tree. This process minimizes a loss

function (defined by the user) using gradient descent, hence the name gradient boosting

[19].

The boosting algorithm [30] starts by initializing a model with a constant value:

F0(x) = argmin
γ

n
∑

i=1

L(yi, γ) (1)

Where F0(x) is a constant representing the initial model prediction before any trees are
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added. argminγ denotes the value of γ that minimizes the total loss. n is the number

of training examples, and L(yi, γ) is the loss function comparing the true target yi with

the prediction γ.

The following steps are repeated for M iterations, where M is the total number of trees

in the model and m denotes the index of the current tree. After initializing the model

with a constant value, the next step is to compute the residuals for each training sample

i. This is done by taking a derivative of the loss L with respect to the previous prediction

Fm−1(x):

rim = −

[

∂L(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)

for i = 1, . . . , n (2)

Multiplying the residuals rim by −1 provides both the direction (+/−) and the magni-

tude needed to minimize the loss function L.

The next step is to train a regression tree using the features x as input and the residuals

r as target. This results in a set of terminal node regions Rjm where j = 1, ..., Jm. Here,

j denotes a terminal node (leaf) in the mth tree, and J represents the total number of

terminal nodes in that tree.

The next step is to find the value γjm that minimizes the loss function L within each

terminal node j:

γjm = argmin
γ

∑

xi∈Rjm

L(yi, Fm−1(xi) + γ) for j = 1, . . . , Jm (3)

The term
∑

xi∈Rjm
L indicates that the loss is being aggregated over all samples xi that

fall within the terminal node region Rjm.

The final step updates the prediction of the combined model Fm(x):

Fm(x) = Fm−1(x) + ν
Jm
∑

j=1

γjm 1(x ∈ Rjm) (4)
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The term γjm1(x ∈ Rjm) indicates that the value γjm is selected if the input x falls

within the terminal node region Rjm. Since all terminal nodes are exclusive, any given

input x belongs to exactly one region Rjm. The corresponding value γjm is then added

to the previous prediction Fm−1(x), resulting in the updated prediction Fm(x). The

parameter ν ∈ [0, 1] is the learning rate. This parameter controls the extent to which the

new tree’s prediction γ should contribute to the update of the combined model Fm(x).

After completing M iterations, the model is fully trained and can be used to make

predictions on unseen data.

Implementations of GBDTs do not inherently capture temporal dependencies. There-

fore, applying models like LightGBM or XGBoost to time series forecasting requires

reframing the sequential data as a supervised learning problem. (Supervised learning is

a type of ML in which the model is trained on labeled data, meaning that both the input

features and the corresponding output values are known. The goal of the training is for

the model to learn the relationship between inputs and outputs so it can make accurate

predictions on new, unseen data.) Reframing time series data for supervised learning

involves engineering features such as lags, date-based indicators, and rolling statistics.

As the sequence of observations carries essential information, preserving temporal or-

der when splitting the data into training and test sets is crucial. The ultimate goal of the

transformation is to provide the model with features that encode time related patterns

from the time series [8]

2.9.4 Light Gradient Boosting Machine (LightGBM)

LightGBM is an open-source implementation of GBDTs developed by Microsoft and

released in 2017 [16]. LightGBM adheres to the fundamental principles of GBDTs, but

distinguishes itself through a series of optimization focused design choices:

• Gradient-based One-Side Sampling (GOSS) Reduces the number of data train-

ing examples without sacrificing accuracy. Training examples with large gradients

indicate poor model performance and contribute more to information gain. GOSS

retain all such examples while randomly dropping examples with small gradients
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[16].

• Exclusive Feature Bundling (EFB): Reduce the number of effective features

without losing important information. Many datasets are sparse, with most fea-

ture values being zero, especially when one-hot encoding is used for categorical

variables. For example, encoding weekdays results in only one nonzero feature

per row. EFB bundles features that rarely have nonzero values at the same time

into a single feature [16].

• Histogram-based Decision Tree Learning: While EFB groups mutually exclu-

sive features into the same feature bundle, the histogram-based algorithm merges

their values into one feature without losing track of their origin. This is achieved

by assigning each original feature a distinct bin range within the combined fea-

ture. By adding an offset, overlapping value ranges can be prevented. For exam-

ple, if feature A has values in [0, 10] and feature B in [0, 20], adding an offset of

10 to feature B shifts its range to [10, 30]. The two features can then be safely

merged into one bundled feature with range [0, 30], while still allowing the model

to distinguish them during training [16].

• Leaf-Wise Tree Growth: Instead of growing trees level-wise as in many other

implementations of GBDTs, LightGBM grows trees leaf-wise by choosing the

split with the maximum loss reduction [16].

• Empirical Performance: The original paper reports that LightGBM speeds up

the training process by more than 20 times compared to conventional implemen-

tations of GBDTs, without compromising accuracy. These findings are supported

by experiments on multiple public datasets [16].

For a more detailed explanation of the optimization design choices in LightGBM, see

the original paper [16].

2.9.5 Extreme Gradient Boosting (XGBoost)

XGBoost is another open-source implementation of GBDTs. It was developed by Tianqi

Chen and Carlos Guestrin, and was formally introduced in 2016 [4]. Similarly to Light-
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GBM, XGBoost follows the core principles of GBDTs, but emphasizes optimization

and scalability. The original paper outlines the major contributions of their work as

follows:

• Scalable end-to-end boosting system: XGBoost is a complete ML framework

designed to handle a wide range of workloads. From small datasets on single

laptops to massive datasets distributed across multiple machines [4].

• Weighted Quantile Sketch: Finding the best points to split features is key in

building decision trees. XGBoost introduces a weighted quantile sketch algorithm

that enables this process to be efficient, even when datasets are big or contain

sample weights. These weights allow the model to treat some training examples as

more important than others. This proposed algorithm estimates good split points

without scanning every single individual value [4].

• Sparsity-aware Algorithm: Many datasets are sparse, meaning they contain

many zero or missing values. XGBoost is designed to handle sparse data by learn-

ing the best default behavior for zeros entries while focusing on nonzero entries

[4].

• Cache-aware Block Structure for Out-of-Core learning: Sometimes datasets

are too big to fit into memory. To handle this, XGBoost uses a strategy that stores

data in compressed blocks stored on disk. It also loads this type of dataset in a way

that minimizes slow memory operations. These innovations enable training of

powerful models on large datasets using standard machines with limited Random

Access Memory [4].

For a more detailed explanation of each contribution, see the original paper introducing

XGBoost [4].

2.10 Artificial Neural Networks (ANNs)

Articial Neural Networks (ANNs) are inspired by the structure and function of the hu-

man brain. In the brain, each biological neuron receives signals from many other neu-
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rons through its dendrites. These signals are combined and, if they exceed a certain

threshold, the neuron activates and sends an electrical impulse through its axon to other

connected neurons. Similarly, in ANNs, each artificial neuron receives inputs, each as-

sociated with a weight representing the strength of the connection. The neuron computes

a weighted sum of its inputs, applies a bias, and passes the result through an activation

function, which determines whether and to what extent the neuron ”fires”. Just as in the

brain, where neurons are organized into layers that process information hierarchically,

artificial neurons are arranged in layers [41]. ANNs always have an input layer to re-

ceive raw data, one or more hidden layers to extract patterns and features, and an output

layer to produce predictions, see Figure 5.

Figure 5 Conceptual architecture of an ANN with one input layer, one hidden layer, and

one output layer.

2.11 Recurrent Neural Networks (RNNs)

Multiple types of ANNs exist, and most process each input independently, without re-

taining a state between inputs. This is suitable for many industrial tasks, such as image

classification or object detection, where sequence memory is not required. However,

some problems depend not only on the current input but also on previous inputs [41].

For example, when reading this sentence, the meaning emerges word by word while

retaining memory of earlier words. Similarly, in demand forecasting, as in this thesis,

past observations influence current predictions.
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Biological intelligence processes information incrementally, maintaining an internal

model built from past information and continuously updating it as new information ar-

rives. A Recurrent Neural Network (RNN) follows the same principle in a simplified

form. It processes sequences by iterating through their elements while maintaining a

state that encodes what has been seen so far [6]. In effect, an RNN incorporates an

internal loop that allows the network to retain memory, see Figure 6

Figure 6 Conceptual architecture of an RNN showing the recurrent connection loop.

The state is reset between independent sequences, meaning each sequence is still treated

as a single data point. However, during processing, the RNN is unfolded over time,

handling the sequence element by element in multiple internal steps rather than in a

single pass [6], see Figure 7.

Figure 7 Illustration of how an RNN is unfolded over time. The network is unfolded into

separate time steps t, with inputs xt, hidden states ht, and outputs yt for each position

in the sequence.
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The unfolding process represents the RNN as a long chain of identical layers, one for

each sequence element. Backpropagation Through Time is applied through this chain in

reverse, from the last element back to the first. The algorithm computes how much each

weight contributed to the total error and propagates this error signal backward through

the unfolded network. Since the same weights are used every time step in the sequence,

gradients from all steps are accumulated to update the shared parameters [6].

As gradients are multiplied repeatedly while moving backward through time, the signal

can either diminish or grow uncontrollably. If it weakens at each step, it approaches zero

by the time it reaches the earliest steps, causing the vanishing gradient problem. If it is

amplified at each step, it can grow excessively large, leading to the exploding gradient

problem, which causes unstable training and widely fluctuating weight updates.

2.11.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is the third and last model developed in this the-

sis. This method is a type of RNN and was originally introduced by Hochreiter and

Schmidhuber in 1997 [13]. It was designed to overcome the vanishing and exploding

gradient problems commonly encountered in standard RNNs during the training of long

sequences. Hochreiter and Schmidhuber addressed this problem by introducing a new

recurrent cell structure, called the LSTM cell. This cell incorporates an internal gating

mechanism that enables the model to selectively retain and discard information over

time [29].

The core idea behind LSTM is to separate and regulate two types of memory: the hid-

den state (short-term) and the cell state (long-term). LSTMs are structured around three

gates: the forget gate, the input gate, and the output gate. These gates use matrix op-

erations and activation functions to regulate the flow of information within the LSTM

cell. By controlling this flow, each gate can retain, boost, or forget information from the

sequence in both the hidden state and the cell state [29]. An LSTM cell is illustrated in

Figure 8.
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Figure 8 Visual representation of the internal structure of the LSTM cell. Illustrates the

forget gate, input gate, output gate, and the cell state. Information flows from left to

right [29].

Two types of activation functions are used within the LSTM cell: the Sigmoid Function

(Equation 5) and the Tanh Function (Equation 6), each serving a distinct purpose. The

tanh function normalizes values to the interval [−1, 1], helping to keep them within a

stable and manageable range. The sigmoid function scales values to the interval [0, 1].

Less important values are pushed toward zero and more important ones toward one. In

essence, the sigmoid function allows the model to decide which information to retain

and which to forget. These activation functions are defined as:

σ(x) =
1

1 + e−x
(5)

tanh(x) =
ex − e−x

ex + e−x
(6)

Each gate serves a specific role in controlling how the hidden state and the cell state are

updated. Each gate includes two learnable weight matrices and a bias term. The result-

ing expression is then passed through a sigmoid activation function. The processing of

information by each gate can be mathematically described by the following equations

[15]:
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First, let the input to the LSTM cell at time t be xt and the hidden state from the previous

time step be Ht−1.

The input gate determines how much information to retain from the current input xt and

the previous hidden state Ht−1. This is determined by the following equation:

Ft = σ(Wxi · xi +Whi · ht−1 + bi) (7)

The forget gate determines how much information to forget from the previous cell state

Ct−1. This is determined by the following equation:

Ft = σ(Wxf · xi +Whf · ht−1 + bf ) (8)

The output gate determines how much information to retain from the current cell state

Ct to create the current hidden state Ht (the output of the cell). This is determined by

the following equation:

Ot = σ(Wxo · xi +Who · ht−1 + bo) (9)

In all gate equations, Wxi, Wxf , Wxo, Whi, Whf , and Who represent learnable weight

parameters. Similarly, bi, bf , and bo represent learnable bias parameters.

The three previously described gates work together to continuously update the current

cell state Ct. The process begins by computing a candidate cell state C̃t using the tanh

activation function:

C̃t = tanh(Wxc · xt +Whc · ht−1 + bc) (10)

Where Wxc and Whc are learnable weight parameters and bc is a learnable bias parame-

ter.

The current cell state is then updated by combining the candidate cell state C̃t, the forget
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gate Ft, and the input gate It:

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (11)

Where ⊙ denotes elementwise multiplication. The forget gate Ft determines how much

information from the previous cell state Ct−1 to retain. The input gate It determines

how much information from the current candidate cell state C̃t to incorporate into the

updated cell state Ct.

In the final step, the newly updated Ct from Equation 11 and the output gate Ot are used

to update the current hidden state Ht.

Ht = Ot ⊙ tanh(Ct) (12)

2.12 Hyperparameter Optimization

A ML model learns from data by adjusting its internal parameters during training. For

example, in GBDTs such as LightGBM and XGBoost, internal parameters include the

splits which determine which features are used for splitting and at what thresholds. In a

LSTM network, internal parameters include the weights learned during training.

In contrast, hyperparameters are variables that control the learning process itself by af-

fecting various aspects of the behavior of the algorithm. One of the most important

hyperparameters in ML is the learning rate. The learning rate regulates how much the

model’s internal parameters are updated in response to the error during training. Hyper-

parameters are set before training begins, either manually or through an optimization

process, commonly referred to as tuning [2].

Hyperparameter optimization is the process of systematically searching for the best

combination of hyperparameter values to improve model performance. Hyperparam-

eters have a significant impact on how well a model learns and generalizes to patterns

from data, making their selection a crucial step in model development [2].
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Multiple strategies exist for hyperparameter optimization. This thesis adopts the Grid-

SearchCV approach. GrisSearchCV is a method that systematically searches through a

predefined set of hyperparameter combinations to identify the configuration that yields

the best performance.
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3 Related work

This chapter examines how demand forecasting in SCM has evolved in response to

technological advances and market uncertainty. It highlights the shift from traditional

statistical models to ML, supported by findings from recent literature and forecasting

competitions.

3.1 The Increasing Role of Demand Forecasting in SCM

Mediavillaa et. al [32] argues that the era of stable markets is history. Demand forecast-

ing has long been a critical component of SCM. However, in today’s fast-paced global

economy, its importance has increased even more. Companies now operate in highly

complex scenarios shaped by unpredictable factors such as monetary crisis, pandemics,

climate change, and supply disruptions. In such unstable conditions, demand forecast-

ing becomes both more challenging and important. Mediavilla et. al highlights that

this scenario has driven the need for continuous improvement of forecasting methods

in SCM. As a result, demand forecasting has emerged as an increasingly prominent

research area in the field.

In another study, Aamer et.a al further underscore the rising importance of demand fore-

casting in SCM. Their paper presents a comprehensive literature review of ML applica-

tion in demand forecasting. A total of 1870 papers published between 2010-2019 were

initially retrieved from different academic databases. Following a systematic screen-

ing process, the number of papers was reduced to 77 for further analysis. The results

showed that the number of publications fluctuated throughout the decade until 2017,

after which a clear and strong upward trend emerged. Publication from 2018 and 2019

alone accounted for 44% of the total reviewed. Given the ongoing advancements in

technology and increasing data availability, it is reasonable to assume that this trend has

continued.

26



3 Related work

3.2 Insights From The Makidakis Competitions

Spyros Makridakis is one of the most influential figures in the field of time series fore-

casting. He is best known for organizing the renowned Makridakis Competitions (M1

[23], M2 [22], M3 [24], M4 [25], and M5 [26]), which began in 1979. These com-

petitions benchmark forecasting methods in real-world settings and promote empirical

evaluation over theoretical claims. Therefore, these competitions are widely regarded

as milestones in forecasting research.

The M4 competition revealed that the forecasting accuracy of individual statistical or

ML methods was relatively low. Instead, the best performing methods involved hybrid

approaches and combinations of methods. Among the 17 most accurate submissions, 12

were combinations of primarily statistical models. Notably, the biggest surprise came

from a hybrid method that integrated both statistical and ML features. This method

achieved nearly 10% higher accuracy than the benchmark method [25].

The second most accurate submission was also a combination of statistical and ML

methods. Moreover, six submitted methods were purely based on ML, and none of them

outperformed the benchmark. However, M4 was still the first forecasting competition to

show that two ML-based methods, one using RNNs and the other using XGBoost, were

significantly more accurate than simple statistical approaches. These findings highlights

a growing belief in the potential of ML in forecasting, although researchers also under-

line that ML remains in its infancy in this field [25].

By the time of the M5 competition in 2022, ML have made significant progress. All

of the top performing methods were purely based on ML in this competition and out-

performed all statistical benchmarks and their combinations. Most of these models

were based on LightGBM. A key insight from the M5 competition was the observed

critical importance of involving explanatory variables. In fact, all winning submissions

leveraged external information (e.g., holidays, promotions, weather) to improve forecast

accuracy.
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3.3 Forecasting With Highly Fluctuating Demand Data

A study titled An Optimized Model Using LSTM Network for Demand Forecasting [1]

investigates the application of ML techniques to demand forecasting in a furniture com-

pany, to develop an accurate forecasting model. The data used in the study shares simi-

larities with the data used in this thesis, particularly in its highly fluctuating nature. The

dataset in the study comprises the monthly sale quantity for a product (local approach)

from 2007 to 2017 and forms a times series of 132 data points. The study explores recent

deep learning methods available at the time (2020) and focuses on optimizing hyperpa-

rameters for an LSTM network. The proposed method, a stacked LSTM network, is

compared to well-known forecasting techniques from both statistical and computational

intelligence categories. The results showed that the proposed method outperformed all

other evaluated methods. The findings underscore the potential of ML techniques to cap-

ture patterns in real-world contexts, while also highlighting the comparatively weaker

performance of traditional statistical methods.
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4 Methodology

This chapter outlines the methodology used to address the research questions in the

thesis. It presents the research design and the pipeline for developing the ML models,

including data collection, preprocessing, analysis, and feature engineering. The chapter

then describes the model development process and evaluation methods. The chapter

concludes with a discussion on validity and reliability.

4.1 Research Approach and Design

This thesis adopts a positivist epistemological approach. This philosophical approach

to knowledge assumes that reality is objective and measurable. It relies on scientific

methods to analyze data and aims to confirm or derive claims through observable and

quantifiable results [3]. Moreover, given the focus on analyzing numerical data, the

research design of this thesis is quantitative in nature.

This thesis focuses on time series forecasting, a scientific approach that uses histori-

cal data to make future predictions. The core idea of this practice is to build models

that learn patterns from past data and apply them to forecast future values and support

decision-making. The thesis aims to develop and compare the performance of three

models: LightGBM, XGBoost, and LSTM, in the context of demand forecasting. Fig-

ure 9 shows the overall pipeline for developing these models. The problem formulation

is detailed in Section 5.1 in the subsequent chapter.

Figure 9 Pipeline for ML model development in this thesis.
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4.2 Data Collection

Once the problem has been defined, the next step is to collect data. This process involves

gathering raw data from one or more sources relevant to the problem. The raw data used

in this thesis is sourced from the case company’s billing log and is provided in Excel

format. It is organized in tabular form, where each row represents a an order of a

product, and each column contains a specific attribute related to that order. From this

log, key information such as date, item number, and quantity is extracted to construct

time series datasets for a Product Family A and for a Product Family B.

4.3 Data Preprocessing

Data preprocessing is a critical step in the ML pipeline illustrated in Figure 9. It is

defined as the process of transforming raw data into into a clean, structured, and usable

format for the preceding data analysis [9].

The goal of the data preprocessing in this thesis is to create two univariate time series

datasets with monthly granularity: one for Product Family A and one for Product Family

B. First, all rows corresponding to item numbers for families A and B, respectively, were

selected. The rows in each dataset were then sorted chronologically and grouped by

month. In some months, no data were recorded, indicating zero demand during those

periods. To establish a continuous monthly time series dataset, missing months were

explicitly added with their corresponding demand values set to zero.

In this thesis, the raw data is organized in tabular format, with each row representing a

transaction and each column representing a specific attribute such as date, item number,

or quantity.

4.4 Data Analysis

The data analysis consists of a general exploratory analysis and an autocorrelation anal-

ysis of the two established time series datasets. The overall aim of the data analysis is to
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gain a deeper understanding of the data. The general analysis involves plotting the data

to reveal its characteristics. Visualizing the data provides an overview of how demand

fluctuates over time. Each time series is plotted alongside a 12-month Moving Aver-

age (MA) and a 12-month rolling Standard Deviation (SD). The 12-month MA smooths

out short-term fluctuations and highlights the long-term trend (upward, downward, or

stable) of demand. The 12-month rolling SD shows the stability of demand around the

trend. A rising SD indicates that demand is becoming more unpredictable with larger

fluctuations from month to month, while a declining SD suggests more predictable and

stable behavior. Visualizations of the two datasets are shown in Figure 10 and Figure 13

in Chapter 5.

The second part of the analysis focuses on autocorrelation. Autocorrelation refers to

the correlation between a time series and its lagged version over time. It captures the

degree to which current observations are influenced by historical values. Identifying

which past values are most predictive supports more informed and targeted feature en-

gineering. To explore the autocorrelation within a time series dataset, Autocorrelation

Function (ACF) and Partial Autocorrelation Function (PACF) plots are commonly used

as diagnostic tools. The ACF shows the overall correlation at multiple lags, including

both direct and indirect effects, while the PACF isolates the direct influence of each lag

by accounting for the effects of intervening lags. The conceptual difference can be il-

lustrated with the following example. The ACF answers the question ”How correlated

is yt with yt−3, including any influence through yt−1 and yt−2?”, while PACF answers

the question ”How correlated is yt with yt−3, after removing the effects of yt−1 and

yt−2?”. Please note that this example is intended solely to clarify the conceptual differ-

ence between ACF and PACF. It does not reflect the specific implementation used in the

thesis.

4.5 Feature Engineering

The feature engineering process is guided by the findings of the data analysis and is

defined as the process of creating new features from existing data [20]. This phase is

especially important for models like LightGBM and XGBoost, which do not inherently

capture temporal dependencies. In this thesis, feature engineering includes the creation
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of the following types of features:

Time Based Features: Extracted from the date to introduce temporal context and cap-

ture seasonality patterns.

Lag Features: Demand values from previous time steps that provide the model with

historical context. The selection of lag features is guided by the PACF plot and is chosen

to ensure that the models has access to the most informative past values.

First Order Difference Features: The difference between the current and previous

demand values. These features represent the rate of change in demand, enabling the

model to detect whether demand is increasing, decreasing, or remaining stable. Their

selection is informed by the PACF plot.

Second Order Difference Features: The change in the rate of change (i.e., acceleration

or deceleration) of demand. These features help the model detect inflection points, such

as the start of a trend or the end of a surge. Also guided by the PACF plot.

Minimum and Maximum Features: The minimum and maximum values observed

within a rolling time window. A rolling time window is a fixed time interval that moves

sequentially through the time series, one time step at a time. At each position, the cal-

culations are applied to the data within that window. These features help the model

identify recent peaks and valleys, incorporates range-awareness that can aid in mitigat-

ing overfitting. The choice of time interval is based on the ACF plot.

MA Features: The average demand over a rolling time window. These features high-

light trends and the selection of time interval is guided by the ACF plot.

Exponentially Weighted Mean (EWM) Features: A smoothed representation of past

demand with exponentially decreasing weights for older observations. Unlike simple

MAs, which weigh all past observations equally, EWMs decays older values exponen-

tially. The decay rate is controlled by a smoothing factor α ∈ [0, 1], where values close

to 0 emphasize long-term trends and values near 1 emphasize short-term changes. The

selection of time interval is guided by the ACF plot. In this thesis, EWM features are

computed using α values of 0.5, 0.7, and 0.9.

Rolling SD Features: The SD in demand over a rolling time window. These features
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capture variability in demand and offer insight into the volatility of recent demand pat-

terns. The selection of time interval is guided by the ACF plot.

LSTM models inherently capture temporal dependencies, making many of the manually

engineered features redundant. Therefore, all features except the time-based ones are

excluded from the LSTM model. The input sequence for the LSTM model is guided by

the ACF plots.

4.6 Model development

The LightGBM, XGBoost, and LSTM models were developed in a Python environ-

ment. Python is widely adopted for ML tasks due to its rich ecosystem of open-source

libraries that support all stages in the ML pipeline. In this thesis, several Python libraries

have been used, including NumPy [10], Pandas [31], Matplotlib [14], Scikit-learn [36],

LightGBM [16], and XGBoost [4]. The LSTM model [13] was implemented using the

Keras library [5], which is a high-level Application Programming Interface for building

and training deep learning models. Keras was chosen for its ease of use, as it abstracts

much of the underlying complexity while still allowing for customization. For example,

when using Keras, manual implementation of backpropagation is not required, unlike in

lower-level frameworks such as TensorFlow [28] or PyTorch [35].

After importing all necessary libraries, the structure of each model could be setup in

accordance with the problem formulation outlined in Section 5.1. All models used

GridSearchCV for hyperparameter optimization with time series cross validation. The

pseudocode of LightGBM and XGBoost can be found in Appendix A and the pseu-

docode for LSTM can be found in Appendix B.

4.6.1 Hyperparameter Optimization LightGBM

LightGBM offers a wide range of hyperparameters, and the selection of which to tune

depends on the use case. The hyperparameters of LightGBM deemed most important

and relevant to this thesis are:
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Number of Estimators: Controls the number of boosting rounds (trees) in the ensem-

ble. If set too low, the model stops training before learning sufficient patterns, resulting

in underfitting. If set too high, the model risks overfitting by continuing to train beyond

the point of optimal generalization.

Number of Leaves: Controls the maximum number of leaf nodes per tree. If set too

low, the trees may be too simple to capture complex patterns in the data, leading to

underfitting. If set too high, the trees can become overly complex and risk memorizing

noise from the training set, leading to overfitting.

Maximum Depth: Controls the maximum depth of each tree and limits how many

splits can occur from root to leaf. If set too low, the trees may not grow deep enough

to capture important splits, leading to underfitting. If set too high, the trees may fit the

training data too closely, including noise, which increases the risk of overfitting.

Learning Rate: Controls how much each tree contributes to the final prediction. Higher

values speeds up learning but increases the risk of overshooting the optimal solution.

Lower values slow down training, but often lead to better generalization.

4.6.2 Hyperparameter Optimization XGBoost

Similarly to LightGBM, XGBoost also offers a wide range of hyperparameters, and the

choice of which to tune depends on the use case. The hyperparameters of XGBoost

deemed most important and relevant to this thesis are:

Number of Estimators: Same significance in XGBoost as in LightGBM.

Minimum Child Weight: Controls the minimum number of samples required in each

leaf node. This hyperparameter ensures that splits are only made when there is sufficient

data to support them. A lower value allows more frequent splitting, which can help

capture fine-grained patterns but also increases the risk of overfitting. A higher value

restricts splitting, resulting in shallower trees and a bigger risk of underfitting by missing

important patterns.

Maximum Depth: Same significance in XGBoost as in LightGBM.
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Learning Rate: Same significance in XGBoost as in LightGBM.

4.6.3 Hyperparameter Optimization LSTM

The hyperparameter optimization for the LSTM model revolves around the same hyper-

parameters as for a normal RNN. The hyperparameters most important and relevant to

optimize in this thesis are:

Input Sequence: Controls the number of time steps fed into the model and corresponds

to the lag features engineered for the LightGBM and XGBoost models. Its selection is

informed by the ACF and PACF plots from the data analysis.

Hidden Layers: Controls the depth of the network and refers to the number of stacked

LSTM layers within the model. More layers allow the model to learn more complex

temporal patterns, but come with a greater risk of overfitting and longer training times.

Neurons per Layer: Controls the dimensionality of the hidden state vector in each

LSTM layer. Each neuron in an LSTM layer captures some aspect of temporal dynamics

in the input sequence. Thus, increasing the number of neurons increases the model’s

representational capacity. However, higher capacity also raises the risk of overfitting, as

the model may start learning noise rather than meaningful patterns.

Dropout Rate: Controls the proportion of neurons that are randomly deactivated dur-

ing each training iteration. This regularization technique helps prevent the model from

relying too heavily on specific neurons. Instead, it encourages the model to learn more

robust and generalizable patterns.

Learning Rate: Controls the size of weight updates during each iteration and deter-

mines how quickly the model learns from the data. A too high learning rate can cause

the model to overshoot optimal weights and fail to occur, while a learning rate that is

too small can lead to slow training and convergence to suboptimal solutions.

Batch Size: Controls the number of training sequences processed in parallel during

each training iteration. The model computes gradients based on all sequences in the

batch before updating the weights. With a small batch size, each weight update is based
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on very few samples. In contrast, a larger batch size produces more stable updates.

Epoch Size: Controls the number of complete passes through the entire training dataset

during model training. One epoch means the model has seen each training sample once.

Training over multiple epochs allows the model to gradually improve by repeatedly

updating its weights. However, using too many epochs increases the risk of overfitting,

as the model may begin to memorize the training data rather than generalize to unseen

data.

4.7 Model Evaluation

Model evaluation is crucial for estimating the performance of the developed forecast-

ing models. As performance is typically assessed based on predictive accuracy, it is

essential to use error metrics that quantify this. These metrics offer insight into model

performance and guide the selection of the best performing model. Ideally, the devel-

oped models would be compared against an existing method used by the case company.

However, since this is not possible, performance will instead be evaluated against a

12-month MA, which serves as a baseline model.

In this thesis, the performance of the developed forecasting models and the 12-month

MA will be evaluated using three widely used error metrics in the field of time series

forecasting and ML: Mean Square Error (MAE), Root Mean Square Error (RMSE), and

Symmetric Mean Absolute Percentage Error (SMAPE).

4.7.1 Mean Absolute Error (MAE)

MAE calculates the average absolute difference between the forecasting values and the

true values. It provides a clear measure of the magnitude of the errors without consid-

ering its direction. It is expressed in the same unit as the target variable, making it easy

to interpret. MAE is defined by the following Equation:
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MAE =
1

n

n
∑

t=1

|yt − ŷt| (13)

Where yt is the true value at time point t, ŷt is the forecasting value at time point t, and

n is the total number of observations.

4.7.2 Root Mean Square Error

RMSE calculates the square root of the average of the squared differences between the

forecasting values and the true values. It is particularly useful when large errors are

undesirable, as the squaring operation penalizes larger errors more heavily than smaller

ones. Similar to MAE, RMSE is expressed in the same unit as the target variable,

making it easy to interpret. RMSE is defined by the following Equation:

RMSE =

√

√

√

√

1

n

n
∑

t=1

(yt − ŷt)2 (14)

Where yt is the true value at time point t, ŷt is the forecasting value at time point t, and

n is the total number of observations.

4.7.3 Symmetric Mean Absolute Percentage Error

SMAPE calculates the percentage difference between the forecasting values and the true

values. This error metric treats under-forecasts and over-forecast equally, which is why

it is referred to as symmetric. Expressing the error as a percentage aids interpretability

in a business context, making SMAPE a valuable complement to MAE and RMSE.

SMAPE is defined by the following Equation:

SMAPE =
100%

n

n
∑

t=1

|ŷt − yt|

(|yt|+ |ŷt|)/2
(15)
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Where yt is the true value at time point t, ŷt is the forecasting value at time point t, and

n is the total number of observations.
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5 Experimental Setup

This chapter presents the experimental setup of the thesis. It includes the problem for-

mulation, the results from the data analysis and feature engineering process, as well as

the parameter grids for the hyperparameter optimization.

5.1 Formulation of Problem

As outlined in Section 1.3, the case company is subject to supply chain constraints due to

long component lead times. Consequently, material procurement must be planned well

in advance. To align this thesis with the company’s operational realities, a simulated

forecasting scenario was established in which product demand is predicted one year

ahead with monthly granularity. The forecasting procedure will generate predictions for

each month of the year 2024. Hence, the year 2024 serves as the test set.

For instance, when forecasting demand for January 2024, only data available up to and

including January 2023 is used. This restriction necessitates the use of a multistep fore-

casting strategy with n = 12 time steps, yielding a forecast horizon of 12 months. As

detailed in Section 2.6, multiple strategies exist for multistep forecasting. However, this

thesis adopts the recursive multistep forecasting approach, wherein a one-step-ahead

model is iteratively applied to generate forecasts for subsequent time steps. This pro-

cedure is then repeated for each subsequent month in 2024. Forecasting demand for

February 2024 involves training on data up to and including February 2023 and apply-

ing the same recursive multistep process with n = 12 recursive time steps.

As described in Section 2.5, this setup results in a forecast interval of one month, as the

model is retrained and re-evaluated monthly using an expanding training window. A

rolling forecast horizon is also employed, wherein the forecast start point advances by

one month for each iteration.

This thesis conducts one experiment for a Product Family A and one experiment for

Product Family B using a local approach. As outlined in Section 2.8, this means separate

models are developed for forecasting of each product family.
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In summary, the forecasting framework employed in this thesis consists of a 12-month

forecast horizon, a recursive multistep prediction strategy with n = 12 time steps, a one

month forecast interval, an expanding training window, and a rolling forecast horizon.

This forecasting framework is employed to each product family using a local approach.

5.2 General Data Analysis Product Family A

The result of plotting the demand of Product Family A, the 12-month MA, and the

12-month rolling SD is shown in Figure 10.

Figure 10 Demand over time of Product Family A

The demand (blue line) is characterized by high volatility with strong month-to-month

fluctuations with several sharp peaks and valleys. These sudden shifts in trend make

the forecasting task particularly challenging [1]. Notably, there are several major spikes

around 2017-2019 during which demand surged sharply. After 2020, a decline in overall

demand is evident, and from 2021 onward, both the magnitude and frequency of large

demand spikes decrease noticeably.
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Observing the 12-month MA (green line), a steady upward trend is visible until 2019,

after which the long-term demand begins to decline. In more recent years, particularly

from 2022 onward, the trend flattens out, suggesting that demand has stabilized at a

lower level.

Observing the 12-month rolling SD (red line), there is a sharp spike around 2014, after

which the SD fluctuates considerably. However, similarly to the MA, from around 2022

onward, the curve flattens out, and the level of predictability remains relatively stable.

5.3 Autocorrelation Analysis Product Family A

Figure 11 shows the ACF plot for Product Family A using a 95% confidence interval.

Figure 11 ACF plot of Product Family A

An autocorrelation of +1 represents a perfect positive relationship, and an autocorrela-

tion of -1 represents a perfect negative relationship. A time series is always perfectly

autocorrelated with itself at lag 0. Any spike outside the shaded region is statistically

significant at the 5% level, whereas a spike inside the shaded region implies no meaning-

ful autocorrelation. Looking at Figure 11, we can observe meaningful autocorrelation
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at lag 1, 2, 3, 4, 5, 7, 9, 10, 12, 14, and 15.

Figure 12 shows the PACF plot for Product Family A using a 95% confidence interval.

Figure 12 PACF plot of Product Family A

Looking at Figure 12, we can observe the lags with a meaningful direct autocorrelation.

These lags are lag 1, 2, 3, and 4.

5.4 General Data Analysis Product Family B

The result of plotting the demand of Product Family B, the 12-month MA, and the

12-month rolling SD can be shown in Figure 13.
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Figure 13 Demand over time of Product Family B

Similar to Product Family A, the demand (blue line) for Product Family B is charac-

terized by high volatility, with strong month-to-month-fluctuations. Figure 13 reveals

several extreme peaks, particularly around 2018 and 2023. Following the final peak,

demand declines rapidly.

The 12-month MA (green line) shows a steady increase in long-term demand until 2016.

Between 2016 and 2023, no clear long-term trend is evident, although fluctuations re-

main pronounced. From 2023 onward, a strong downward trend is observed.

The 12-month rolling SD (red line) remains relatively stable throughout most of the

series. However, noticeable increases are observed in connection with the extreme peaks

in demand, indicating that demand became more unpredictable during these periods.

5.5 Autocorrelation Analysis Product Family B

Figure 11 shows the ACF plot for Product Family A using a 95% confidence interval.
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Figure 14 ACF plot of Product Family B

Looking at Figure 14, we can observe meaningful autocorrelation at lag 1, 2, 3, 4, 5, 7

and 9.

Figure 15 shows the PACF plot for Product Family B using a 95% confidence interval.

Figure 15 PACF plot of Product Family B
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Looking at Figure 15, we can observe the lags with a meaningful direct autocorrelation.

These lags are lag 1 and 2.

5.6 Result of Feature Engineering Process

As outlined in Section 4.5, the feature engineering process is guided by the findings

of the data analysis. Table 1 summarizes the complete set of engineered features for

each product family and each developed model. ”Yes” indicates that the model uses the

feature for learning, ”No” indicates that the model does not use the feature for learning.

Product Family A Product Family B LightGBM XGBoost LSTM

Time-Based Features Month, Quarter, Year Month, Quarter, Year Yes Yes Yes

Lag Features (lags) 1, 2, 3, 4 1, 2 Yes Yes No

First Order Difference Features (lags) 1, 2, 3, 4 1, 2 Yes Yes No

Second Order Difference Features (lags) 1, 2, 3, 4 1, 2 Yes Yes No

Minimum and Maximum Features (window) 4, 10, 15 5, 9 Yes Yes No

MA features (window) 4, 10, 15, expanding 5, 9, expanding Yes Yes No

EWM features (window) 4, 10, 15, expanding 4, 10, 15, expanding Yes Yes No

Rolling SD Features (window) 4, 10, 15, expanding 5, 9, expanding Yes Yes No

Table 1 Complete set of engineered features for LightGBM, XGBoost, and LSTM.

The selected features were informed by the analyses presented in Sections 5.2, 5.3, 5.4,

and 5.5. Lag features were chosen based on statistically significant lags identified in the

autocorrelation analysis, ensuring that the model had access to the most informative past

values. The difference features (first and second order) were included to capture changes

and inflection points in demand, which were observed for both Product Family A and

Product Family B. Rolling statistics features (MA, Minimum and Maximum, Rolling

SD) were motivated by the presence of local volatility. These features were chosen to

help the model detect recent peaks, valleys, and periods of stability. EWM features

were included to provide a smoothed representation of past demand, with adjustable

sensitivity controlled by α. Using α = 0.5, 0.7, 0.9 ensured a balance between short-

term and long-term memory.

As earlier noted, for the LSTM model, only time-based features were retained, as the

LSTM architecture is inherently capable of learning temporal dependencies.
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5.7 Hyperparameter Optimization Parameter Grids

The hyperparameter values listed in Tables 2, 3, and 4 were selected to balance flexibil-

ity, training time, and the risk of overfitting. All ranges were determined based on prior

literature, exploratory testing, and computational feasibility.

The hyperparameters of LightGBM deemed most important and relevant to this thesis

are listed in Table 2.

Hyperparameter Values Product Family A Values Product Family B

Number of Estimators [100, 150, 200, 250] [100, 150, 200, 250]

Number of Leaves [5, 10, 15] [5, 10, 15]

Maximum Depth [3, 5, 7, 9] [3, 5, 7, 9]

Learning Rate [0.05, 0.06, 0.07, 0.08] [0.05, 0.06, 0.07, 0.08]

Table 2 Hyperparameter optimization parameter grid for LightGBM model.

The hyperparameters of XGBoost deemed most important and relevant to this thesis are

listed in Table 3.

Hyperparameter Values Product Family A Values Product Family B

Number of Estimators [100, 150, 200, 250] [100, 150, 200, 250]

Minimum Child Weight [5, 10, 15] [5, 10, 15]

Maximum Depth [3, 5, 7, 9] [3, 5, 7, 9]

Learning Rate [0.05, 0.06, 0.07, 0.08] [0.05, 0.06, 0.07, 0.08]

Table 3 Hyperparameter optimization parameter grid for XGBoost model.

The number of estimators for both LightGBM and XGBoost was set in the range of 100-

250 for both product families. This range allows the ensemble models to be expressive

without incurring excessive training cost. Increasing the number of estimators beyond

this range did not improve performance but instead led to overfitting. The values for

number of leaves, minimum child weight, and maximum depth were tuned to control

the tree complexity and were determined primarily through experimental testing. The

learning rates for the GBDTs implementations were also chosen based on empirical ex-

perimentation. More conservative and aggressive rates were initially explored, however,

the range that yielded the best and most consistent performance was found to be in the

range of 0.05-0.08.
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The hyperparameters of most important and relevant to optimize in this thesis are listed

in Table 4.

Hyperparameter Values Product Family A Values Product Family B

Input Sequence [4, 5, 7, 10, 15] [5, 6, 7, 8, 9]

Hidden Layers [1, 2] [1, 2]

Neurons per Layer [4, 8, 16, 32, 64, 128] [4, 8, 16, 32, 64, 128]

Dropout Rate [0.01, 0.05] [0.01, 0.05]

Learning Rate [0.0001, 0.001, 0.01] [0.0001, 0.001, 0.01]

Batch Size [1, 5, 10, 20] [1, 5, 10, 20]

Epoch Size [50, 100, 200, 300, 400, 500] [50, 100, 200, 300, 400, 500]

Table 4 Hyperparameter optimization parameter grid for LSTM model.

The input sequence parameter for LSTM corresponds to the lag features used in Light-

GBM and XGBoost, as it determines the number of time steps fed into the model. Its

values were selected based on lags showing meaningful autocorrelation. For example,

Product Family A showed no meaningful autocorrelation beyond lag 15. Therefore,

longer sequences than 15 were not considered.

The number of hidden layers was limited to one or two to avoid unnecessary complexity.

This was consistent with findings in similar studies where deeper architectures provided

no additional benefit. The number of neurons per layer was explored in the interval

[4, 8, 16, 32, 64], following a power of two progression. This choice is common in neu-

ral network tuning as it spans a wide range of representational model capacitites while

maintaining efficiency. The dropout rate was restricted to relatively low values, reflect-

ing the small dataset sizes. Higher rates would risk discarding too much information

and hindering learning rather than improving generalization.

The learning rate range was determined after testing more aggressive and more con-

servative values outside this interval. A wider range was initially explored to identify

whether faster learning or more gradual optimization was advantageous. However, the

chosen interval [0.0001, 0.001, 0.01] yielded the best and most consistent performance.

The batch size was explored in the interval [1, 5, 10, 20] to assess the trade-off between

sensitivity to data variability (smaller batches) and gradient stability (larger batches).

Finally, the number of epochs was explored in the interval [50, 100, 200, 300, 400, 500]
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to capture both short and long training schedules. This allowed identification of the point

where no additional training no longer improved performance, achieving a balance be-

tween convergence and generalization. Given the small datasets, it was computationally

feasible to explore this wider range of epoch sizes.
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6 Results

This chapter presents the results of the experiments conducted in the thesis and ad-

dresses the research questions. The performance of the developed forecasting models

for both product families is evaluated using selected error metrics, and the results are

compared against a baseline method.

6.1 Forecasting Results for Product Family A

Table 5 presents the performance of the developed forecasting models for Product Fam-

ily A. Each model, including the baseline, is evaluated using the selected error metrics:

MAE, RMSE, and SMAPE.

Error Metric LightGBM XGBoost LSTM Baseline

MAE (units) 6.4 14.8 22.4 15.6

RMSE (units) 9.4 18.1 27.9 20.5

SMAPE (%) 20.8 36.8 54.5 40.3

Table 5 Forecasting performance for Product Family A during the year 2024.

Table 5 shows that LightGBM achieved best performance in forecasting the demand

of Product Family A, followed by XGBoost and then LSTM. When compared to the

baseline model, both LightGBM and XGBoost outperformed the baseline, while LSTM

did not.

Table 6 presents the monthly forecasts for the year 2024. The values in the parentheses

indicate the absolute difference between the actual and forecasted demand.
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Date Actual Demand LightGBM XGBoost LSTM Baseline

2024-01-01 21.0 29.4 (8.4) 48.1 (27.1) 41.1 (20.1) 30.2 (9.2)

2024-02-01 38.0 28.8 (9.2) 52.8 (14.8) 21.4 (16.6) 27.0 (11.0)

2024-03-01 28.0 33.8 (5.8) 51.2 (23.2) 41.0 (13.0) 27.6 (0.4)

2024-04-01 74.0 74.8 (0.8) 51.2 (22.8) 41.9 (32.1) 27.9 (46.1)

2024-05-01 29.0 29.0 (0.0) 38.2 (9.2) 23.0 (6.0) 34.1 (5.1)

2024-06-01 29.0 25.7 (3.3) 32.2 (3.2) 64.8 (35.8) 36.5 (7.5)

2024-07-01 24.0 19.1 (4.9) 22.7 (1.3) 60.2 (36.2) 33.7 (9.7)

2024-08-01 16.0 41.9 (25.9) 34.2 (18.2) 60.9 (44.9) 34.8 (18.8)

2024-09-01 53.0 53.3 (0.3) 35.6 (17.4) 51.2 (1.8) 33.1 (19.9)

2024-10-01 35.0 46.4 (11.4) 28.8 (6.2) 31.8 (3.2) 27.5 (7.5)

2024-11-01 46.0 39.4 (6.6) 46.4 (0.4) 52.0 (6.0) 34.0 (12.0)

2024-12-01 73.0 62.0 (11.0) 39.3 (33.7) 20.4 (52,6) 33.3 (39.7)

Table 6 Forecasting results by month for Product Family A during 2024.

Table 6 shows that LightGBM outperformed the baseline model in 9 out of 12 months

(75%), while XGBoost did so in 8 out of 12 months (67%). LSTM, by contrast, only

surpassed the baseline in 3 out of 12 months (25%)

The research question was ”How does the performance of ML models compare to that

of a baseline model in forecasting the demand for Product Family A?”. The results

show that LightGBM performed best relative to the baseline, followed by XGBoost,

and lastly LSTM. A visual representation of the forecasting results for Product Family

A is provided in Appendix C

6.2 Forecasting Results for Product Family B

Table 7 presents the performance of the developed forecasting models for Product Fam-

ily B. Each model, including the baseline, is evaluated using the selected error metrics:

MAE, RMSE, and SMAPE.

Error Metric LightGBM XGBoost LSTM Baseline

MAE (units) 63.8 56.0 70.8 45.3

RMSE (units) 69.4 63.7 83.4 52.0

SMAPE (%) 87.1 81.2 86.9 72.4

Table 7 Forecasting performance for Product Family B during the year 2024.
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Table 7 shows that XGBoost achieved the best performance in forecasting demand for

Product Family B, followed by LightGBM and then LSTM. However, when compared

to the baseline model, none och the developed forecasting models outperformed it.

Table 8 presents the monthly forecasts for the year 2024. The values in the parentheses

indicate the absolute difference between the actual and forecasted demand.

Date Actual Demand LightGBM XGBoost LSTM Baseline

2024-01-01 132.0 122.3 (9.7) 133.1 (1.1) 118.5 (13.5) 135.3 (3.3)

2024-02-01 43.0 89.5 (46.5) 101.2 (58.2) 91.6 (48.6) 130.0 (87.0)

2024-03-01 36.0 137.0 (101.0) 131.0 (95.0) 140.4 (104.4) 111.7 (75.7)

2024-04-01 20.0 113.8 (93.6) 122.6 (102.6) 160.4 (140.4) 100.9 (80.9)

2024-05-01 44.0 123.4 (79.4) 134.6 (92.6) 148.5 (104.5) 82.1 (38.1)

2024-06-01 119.0 82.3 (36.7) 71.9 (47.1) 143.7 (24.7) 80.1 (38.9)

2024-07-01 23.0 103.3 (80.1) 66.3 (43.3) 144.8 (121.8) 80.3 (57.1)

2024-08-01 33.0 75.4 (42.4) 91.0 (58) 133.5 (100.5) 80.3 (47.3)

2024-09-01 52.0 105.5 (53.5) 91.2 (20.8) 101.7 (49.7) 77.4 (25.4)

2024-10-01 77.0 123.6 (46.6) 64.4 (12.6) 72.7 (4.3) 67.9 (9.1)

2024-11-01 20.0 113.7 (93.7) 100.3 (80.3) 120.4 (100.4) 66.3 (46.3)

2024-12-01 28.0 110.3 (82.3) 71.5 (43.5) 64.8 (36.8) 62.8 (34.0)

Table 8 Forecasting results by month for Product Family B during 2024.

Table 8 shows that LightGBM outperformed the baseline in only 2 out of 12 months

(17%), while XGBoost and LSTM outperformed the baseline in 4 months (33%) and 3

months (25%), respectively.

The research question was ”How does the performance of ML models compare to that

of a baseline model in forecasting the demand for Product Family A?”. The results show

that XGBoost performed best relative to the baseline, followed by LightGBM, and lastly

LSTM. However, none of the developed forecasting models outperformed the baseline.

A visual representation of the forecasting results for Product Family B is provided in

Appendix D
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7 Discussion

This chapter presents a discussion of the results and the methodological choices. It also

includes general reflections and considerations of potential improvements.

From the previous chapter, it is evident that the forecasting results for Product Family A

are significantly better than the results for Product Family B. The PACF plots indicate

that in the time series for Product Family B, only the first two lags exhibit meaning-

ful direct autocorrelation. In comparison, the time series for Product family A shows

meaningful autocorrelation across the first four lags. This difference could explain the

observed variation in forecasting performance. Another possible explanation for the

poorer performance on Product Family B is the nature of the underlying dataset. Prod-

uct Family B includes demand from 82 unique customers, whereas Product Family A’s

dataset involves only 8 customers, all associated with the same company. This uni-

formity could have contributed to the forecasting being more predictable, and thus the

forecasting performance being better for Product Family A.

As seen in Figures 10 and 13, both time series are characterized by strong month-to-

month fluctuations, making forecasting a difficult task as it is. But looking more into

detail on Figure 13, depicting the demand of Product Family B, there is a sharp spike

followed by a steep downward trend at the end of the observation period. This sudden

change suggests that the year 2024, which the experiment was forecasting, have been an

anomalous year. Since the model was not trained on patterns resembling this behavior,

it struggled to produce accurate forecasts. It is important to remember that a machine

learning model is only as good as the data it has been trained on.

The datasets for Product Family A and Product Family B are derived from historical

demand, with all other features engineered from this base. Given the high month-to-

month fluctuations in both time series, it would be beneficial to incorporate features that

explain and influence demand, commonly referred to as demand drivers. These features

could include indicators of a product family’s position in its life cycle, such as whether

it is peaking or approaching end of life, as these stages are likely to impact demand

patterns. Additionally, as mentioned in the introduction chapter, the case company is

sensitive to a wide range of external economic and industry specific factors. These
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7 Discussion

external factors could also serve as important demand drivers.

Initially, this thesis aimed to conduct two types of experiments: the first being the cur-

rent study, and the second involving the inclusion of external factors to assess their

impact on forecasting performance. Examples of such external factors could be infla-

tion, GDP, and market trends. However, the case company did not have this type of data

documented, and it proved difficult to obtain this type of data from external sources. As

a result, the second planned experiment had to be discarded.

Another aspect worth discussing is the representativeness of the data. Does a billing log

truly reflect actual demand? For instance, the billing log does not account for product

availability. Theoretically, there could still be demand for a product even if it is out

of stock and therefore cannot be sold or recorded in the billing log. Additionally, the

billing log does not capture the impact of blocked customers. Blocked customers are

customers temporarily restricted due to, for instance, unpaid invoices. As a result, a

peak in the demand plots (Figures 10 and 13) could be explained by previously blocked

customers being unblocked.

The methodological choices made in this thesis also merit reflection. In hindsight, it

may have been better to adopt a global approach rather than a local one, or to con-

duct experiments using both to determine which yields better performance. A global

approach would provide the model with more data and involve training on all product

families simultaneously. This would enable the model to learn interdependencies be-

tween product families. For example, product families targeting the same end markets

are likely to exhibit similar demand patterns. Moreover, a decline in demand in one end

market could indicate growth in another. When any form of interdependency is present,

a global approach may yield a more accurate and robust forecasting model.

Another methodological consideration concerns the approach used for multistep fore-

casting. As outlined in Section 2.6, several strategies exist for addressing this type of

problem. Based on the findings from the data analysis presented in Chapter 5, particu-

larly the characteristics of both time series and their autocorrelation patterns, this thesis

adopted the recursive multistep forecasting approach. The alternative strategies involve

developing models that forecast multiple future time steps directly. However, consider-

ing the strong month-to-month fluctuations and the limited autocorrelation, especially
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7 Discussion

in the latter part of the forecast horizon, direct forecasting appeared unstable. For these

reasons, the recursive approach was deemed the most appropriate choice.
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8 Conclusions

This chapter summarizes the key findings of the thesis and answers the research ques-

tions.

The objective of this thesis was to explore how ML can be applied to demand fore-

casting. This was achieved by conducting experiments on two product families using

historical demand data provided by a case company. The experimental setup was de-

signed to simulate the case company’s current forecasting conditions. Since no existing

method was available for comparison, a 12-month MA was introduced as a baseline

model. The thesis evaluated three different ML models: LightGBM, XGBoost, and

LSTM.

Two experiments were conducted, one for a Product Family A and one for a Product

Family B. The results show that for Product Family A, LightGBM achieved the best

performance, followed by XGBoost and LSTM. In this case, both LightGBM and XG-

Boost outperformed the baseline. For Product Family B, XGBoost performed best, fol-

lowed by LightGBM and LSTM. However, none of the developed forecasting models

outperformed the baseline for this product family.

Accurate demand forecasting can be highly valuable for businesses as it supports better

planning and decision-making. However, forecasting remains a complex task, especially

over longer horizons. The forecasting models developed in this thesis are not yet ready

for deployment in a production environment as further refinements are necessary. The

performance of ML models heavily depends on the preparatory work carried out before

model training. It is essential to structure and model the data in a way that accurately

reflects the context in which the forecasts will be applied.

In conclusion, this thesis has demonstrated how ML can be applied to demand forecast-

ing in a real-world setting. While the results leave room for improvement, they suggest

that ML holds strong potential in this domain. Therefore, the objective of this thesis is

considered fulfilled.
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9 Future Work

This chapter outlines potential directions for future research based on the findings and

limitations of the thesis.

While this thesis has provided valuable insights into the application of ML for demand

forecasting, several areas remain open for further exploration. One such area is the use

of a global forecasting approach, which would account for interdependencies across

product families. This is an aspect that is not captured by the local approach used in

this thesis. Another area for improvement is data modeling. The observed demand

patterns of the product families in this thesis are highly fluctuating and exhibit limited

autocorrelation. This indicates a need for involving features that can explain the under-

lying behavior. Future research could therefore focus on identifying demand drivers and

collecting such data if available, or establishing processes to collect it going forward.

Finally, further investigation into the mentioned multistep forecasting approaches could

serve as valuable direction for future research.
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B Pseudocode of LSTM Model

A Pseudocode of LightGBM and XGBoost Models

Since LightGBM and XGBoost are both implementations of GBDTs, their model de-

velopment follows the same procedure. The pseudocode for both models is presented

in Algorithm 1.

1: Load preprocessed data

2: Split data into features and target using data up to 2023

3: Define hyperparameter grid

4: Run GridSearchCV to find best hyperparameters

5: for month = 1 to 12 do

6: Select training data up to the same month in 2023

7: Fit model using best hyperparameters

8: Predict on training data

9: Compute RMSE, MAE, and SMAPE of training

10: Initialize recursive forecast dataset (copy of training data)

11: for step = 1 to forecast horizon do

12: Select last row as input

13: Predict next value

14: Append prediction to recursive forecast dataset

15: Recalculate features

16: end for

17: Store final forecast for the month

18: end for

19: Compute RMSE, MAE, and SMAPE of forecast

20: Visualize results

Algorithm 1 Pseudo code for the LightGBM and XGBoost models.

B Pseudocode of LSTM Model

The pseudocode for the LSTM model is presented in Algorithm 2
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B Pseudocode of LSTM Model

1: function CREATESEQUENCES(data, lookback)

2: Generate overlapping input-output pairs (Xtrain, ytrain)
3: end function

4: function RECURSIVEFORECAST(model, input seq, steps)

5: for each forecast horizon step do

6: Predict next value

7: Append prediction to sequence

8: end for

9: return last prediction

10: end function

11: Load preprocessed data

12: Normalize target using MinMaxScaler

13: Split data into features and training using all data up to 2023 using CREATESE-

QUENCES(train series, lookback)

14: Reshape xtrain for LSTM input

15: Run GridSearchCV to find best hyperparameters

16: for month = 1 to 12 do

17: Split data into features and target using all data up to the same month in 2023

using CREATESEQUENCES(train series, lookback)

18: Reshape xtrain for LSTM input

19: Fit model using best hyperparameters

20: Predict on training data

21: Inverse scale predictions

22: Compute RMSE, MAE, and SMAPE of training

23: Extract last lookback window from training data

24: RECURSIVEFORECAST(model, input seq, 12)

25: Inverse scale last prediction

26: Store result

27: end for

28: Compute RMSE, MAE, and SMAPE of forecast

29: Visualize results

Algorithm 2 Pseudo code for the LSTM model.
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C Visual Representation of Forecasting Results Product Family A

C Visual Representation of Forecasting Results Prod-

uct Family A

The following plots provide a visual representation of the forecasting results for Product

Family A.

Figure 16 Forecasting results of LightGBM for Product Family A
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C Visual Representation of Forecasting Results Product Family A

Figure 17 Forecasting results of XGBoost for Product Family A

Figure 18 Forecasting results of LSTM for Product Family A
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D Visual Representation of Forecasting Results Product Family B

D Visual Representation of Forecasting Results Prod-

uct Family B

The following plots provide a visual representation of the forecasting results for Product

Family B.

Figure 19 Forecasting results of LightGBM for Product Family B
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D Visual Representation of Forecasting Results Product Family B

Figure 20 Forecasting results of XGBoost for Product Family B

Figure 21 Forecasting results of LSTM for Product Family B
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