
IT mIA 25 010

Degree project 30 credits
July, 2025

Reducing Supply Chain
Uncertainty with Machine
Learning: Forecasting Supplier
Lead Times

Oskar Granlund

Master’s Programme in Industrial Analytics

Reducing Supply Chain Uncertainty with Machine Learning:

Forecasting Supplier Lead Times

Oskar Granlund

Abstract
With supply chains becomes more globalized and complex, accurate lead time forecasting

is becoming increasingly more critical for maintaining operational efficiency and company com-

petitiveness. This thesis investigates how Machine Learning (ML) techniques can increase the

predictability of external supplier lead times using historical and contextual data. Three models

were chosen based on previous research done in similar studies: Random Forest (RF), EXtreme

Gradient Boosting (XGBoost) and Neural Network (NN). The data, obtained from a leading manu-

facturing company in the mining sector, was preprocessed and engineered to improve the model

forecasting accuracy. Each model was optimized using hyperparameter tuning and evaluated

using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of

Determination (R2).

All three models demonstrated considerable improvements over the company’s baseline lead

time estimations. The NN outperformed the other models with an improvement of 63.7% MAE

in comparison to the baseline estimates. XGBoost and RF did also perform well, with error

reductions of 59.6% and 54.5% respectively.

The results confirm that ML can effectively improve external lead time forecasting in com-

plex supply chain environments. The models developed during this thesis offer a practical use

for improving planning reliability, operational efficiency improvements, and supporting decision-

making.

Faculty of Science and Technology
Uppsala University, Place of publication Uppsala

Supervisor: Toni Sigmundson Subject reader: Stefanos Kaxiras
Examiner: Olle Gällmo & Hans Karlsson

Sammanfattning

I takt med att leveranskedjor blir allt mer globaliserade och komplexa, blir noggrann

prognostisering av ledtider allt viktigare för att upprätthålla operativ effektivitet och

konkurrenskraft. Denna uppsats undersöker hur maskininlärningstekniker kan öka förut-

sägbarheten för externa leverantörers ledtider genom att använda historisk och kontex-

tuell data. Tre modeller valdes ut baserat på tidigare forskning inom området: RF, XG-

Boost och NN. Den data som erhölls från ett ledande tillverkningsföretag inom gruvsek-

torn, förbehandlades och anpassades för att förbättra modellernas prognosnoggrannhet.

Varje modell optimerades genom hyperparameterjustering och utvärderades med hjälp

av metoderna genomsnittligt absolut fel MAE, kvadratroten av medelkvadratfelet RM-

SE samt determinationskoefficienten R2.

Samtliga modeller visade tydliga förbättringar jämfört med företagets befintliga upp-

skattningar av ledtider. NN presterade bäst med en förbättring på 63,7% i MAE jämfört

med baslinjeuppskattningarna. Även XGBoost och RF uppvisade goda resultat med fel-

reduktioner på 59,6% respektive 54,5%.

Resultaten bekräftar att ML effektivt kan förbättra prognostiseringen av externa ledti-

der i komplexa leveranskedjemiljöer. De modeller som utvecklats inom ramen för denna

uppsats utgör ett praktiskt verktyg för att förbättra planeringssäkerhet, öka den operativa

effektiviteten och stödja beslutsfattande.

Acknowledgement First and foremost, I would like to express my deepest gratitude

to my supervisors at Frontit, Daniel Rödjemyr and Toni Sigmundson, for their invalu-

able support and encouragement throughout this thesis. I am especially thankful for

their efforts in coordinating and maintaining communication with Epiroc, which proved

vital to the success of this thesis. I would also like to show gratitude towards Frontit

for helping me find this thesis opportunity, and for their warm welcome and supportive

environment.

I would also like to extend my sincere appreciation to Epiroc for serving as the case

company in this study. A special thanks to Stina Bouvin for being supportive throughout

the project, as well as providing data and practical insights into Epiroc’s operations.

Furthermore, I am grateful to my subject reviewer, Stefanos Kaxiras, for his con-

structive feedback and guidance on academic writing.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Description . 1

1.3 Explanation of Key Concepts . 2

1.4 Purpose . 2

1.5 Goal . 3

1.6 Research Questions . 3

1.7 Methodology . 3

1.8 Delimitations . 3

2 Literature Review 4

3 Theory 6

3.1 Supply Chain Lead Times and Their Impact 6

3.2 Machine Learning . 7

3.3 Supervised Machine Learning . 8

3.4 Tree-Based Methods . 9

3.4.1 Decision Trees . 9

3.4.2 Random Forests . 12

3.4.3 Gradient Boosting . 13

3.4.4 eXtreme Gradient Boosting 13

3.5 Feedforward Neural Networks . 15

3.5.1 Activation Functions . 16

3.5.2 Rectified Linear Unit . 17

3.5.3 Training a Neural Network . 17

3.5.4 Backpropagation . 18

3.6 Early Stopping . 19

3.7 K-fold Cross-Validation . 19

3.8 Model Evaluation . 20

3.8.1 Mean Squared Error . 21

3.8.2 Root Mean Squared Error . 21

3.8.3 Mean Absolute Error . 21

3.8.4 Coefficient of Determination 22

4 Method 23

4.1 Acquisition and Exploration of Data 26

4.2 Preprocessing . 26

4.2.1 Handling Inconsistencies . 26

4.2.2 Time-frame Filtering . 27

iv

4.2.3 Missing Values . 27

4.2.4 Frequency Threshold . 28

4.2.5 Outlier Detection . 28

4.2.6 Feature Engineering . 28

4.2.7 Categorical and Textual Features 29

4.2.8 Feature Reduction . 29

4.3 Selected Features for Model Training 29

4.4 Model Selection . 30

4.5 Model Training . 31

4.5.1 Data Splitting . 31

4.5.2 Model Creation . 33

4.5.3 Hyperparameter Tuning . 34

4.5.4 Hyperparameters - Random Forest 34

4.5.5 Hyperparameters - XGBoost 35

4.5.6 Neural Network . 35

5 Results 37

5.1 Random Forest . 37

5.2 XGBoost . 39

5.3 Neural Network . 41

5.4 Overall Performance . 43

6 Discussion 44

6.1 Future Work . 45

7 Conclusion 46

Appendices 52

A EXtreme Gradient Boosting 52

B Gradient Descent 54

C Stochastic Gradient Descent 55

D Adaptive Moment Estimation 55

E Dropout 56

v

List of Figures

1 Example of a regression tree . 10

2 Predictor space representation of regression tree 11

3 Neural network structure with two hidden layers 16

4 ReLU activation function . 17

5 Visualization of k-fold cross-validation 20

6 Model pipeline overview . 25

7 Effect of year-based filtering . 27

8 Effect of Z-score filtering . 28

9 Data split for training, validation, and testing 32

10 K-fold split of dataset for cross-validation 33

11 MAE comparison between model and baseline 38

12 Residual comparison: model vs. agreed lead time 38

13 XGBoost performance compared to baseline 40

14 Residual comparison: XGBoost vs. agreed lead time 40

15 FNN performance compared to baseline 42

16 Residual comparison: FNN vs. agreed lead time 42

17 Comparison of all model performances vs. baseline 43

vi

List of Tables

1 Parameter grid for Random Forest tuning 34

2 Parameter grid for XGBoost tuning . 35

3 Parameter grid for FNN tuning . 36

4 Optimal hyperparameters for RF . 37

5 Prediction metrics for Random Forest 37

6 Optimal hyperparameters for XGBoost 39

7 Prediction metrics for XGBoost . 39

8 Optimal hyperparameters for FNN . 41

9 Prediction metrics for FNN . 41

10 Model performance comparison . 43

vii

Acronyms

R2 Coefficient of Determination.

Adam Adaptive Moment Estimation.

AI Artificial Intelligence.

CV Cross-Validation.

FNN Feedforwad Neural Network.

GridSearchCV Grid Search with Cross-Validation.

MAE Mean Absolute Error.

ML Machine Learning.

MSE Mean Squared Error.

NN Neural Network.

RF Random Forest.

RMSE Root Mean Squared Error.

SCM Supply Chain Management.

SGD Stochastic Gradient Descent.

XGBoost EXtreme Gradient Boosting.

viii

1 Introduction

1 Introduction

This master’s thesis was conducted at Uppsala University in collaboration with Frontit

AB and Epiroc. Frontit is a consulting company that specializes in project- and change

management, providing expert guidance to organizations. Epiroc is an industry leader

in innovative solutions for mining and infrastructure operations.

1.1 Background

In modern times, supply chains are increasingly globalized, complex, and sensitive to

external disruptions. To attain an efficient Supply Chain Management (SCM), the abil-

ity to accurately forecast supplier lead times has become a crucial component. Not

having accurate lead time forecasts may lead to major operational inefficiencies, such

as unnecessarily high inventory costs, production disruptions, or idle resources.

The COVID-19 pandemic exposed underlying vulnerabilities in the global supply

chains [1]. As just-in-time strategies have become widespread, production disruptions

in certain areas have had major downstream impacts and uncertainties throughout entire

supply networks [2]. To address this, many companies started to overcompensate by

inflating their promised lead times, to reduce the risk of missing delivery deadlines [3].

While this may prevent late deliveries, it introduces new inefficiencies, such as early

arrivals and increasing of stock capacity demands.

As companies attempt to balance a lean methodology with supply chain robustness,

the need for more accurate, data-driven lead time predictions has grown. In recent

years, ML has become an increasingly promising method to forecast lead times more

reliably [4], by identifying the underlying patterns in historical and contextual data that

traditional forecasting methods fail to uncover.

1.2 Problem Description

To illustrate this industry-wide issue in a real-world setting, this thesis examines a case

study involving Epiroc, a global manufacturing company in the mining and infrastruc-

ture industry. Epiroc collaborates with a large network of external suppliers, all of

whom provide fixed annual lead time estimates that are often inaccurate. In a signif-

icant number of cases, deliveries arrive either earlier or later than originally promised

by the supplier. This results in planning disruptions, stock inefficiencies, production

delays, and increased operational costs.

These deviations in delivery timing, complicate scheduling and inventory control.

while overestimating lead times may result in a reduction in late deliveries, they can lead

to early deliveries which in turn lead to excess inventory levels. This brings issues to the

supply chain further downstream in the production system, as it introduces inefficiencies

that ultimately result in worse operational performance [2].

1

1 Introduction

To address this issue, this thesis proposes the utilization of a ML-based approach to

predict the actual supplier lead times. By analyzing historical order data and incorpo-

rating contextual variables, the aim is to develop ML models that offer greater accuracy

than the existing supplier lead time estimates. Three models is selected based on prior

research in the subject and the structure of the data, they are compared against each

other and the baseline supplier lead time estimates. Such models can enable more re-

liable planning, improved production up-time, and reduced inventory and delay-related

costs.

1.3 Explanation of Key Concepts

In this section, the key concepts which are specific to this project will be explained.

• Lead Time: In the context of this thesis, lead time refers to the entire duration of

the supplier’s process. From the moment an order is released to the point when

the goods leave the supplier’s possession.

• Actual Lead Time: The real-time interval between when the order is released and

when it is fully completed in the supplier’s process. Delivery or transportation is

not included in the scope of this thesis.

• Predicted Lead Time: The estimated value of the actual lead time, as predicted

by the ML-models based on available input features.

• Baseline: In this thesis, the baseline refers to the lead time estimates currently

provided by suppliers and used by Epiroc in their operations. It serves as a refer-

ence point against which the performance of the ML models is evaluated.

• External Supplier: Refers to a third-party company that delivers goods or com-

ponents to Epiroc from outside the organization.

1.4 Purpose

The purpose of this thesis is to investigate the feasibility and effectiveness of using ML

to improve accuracy of external lead time predictions. Reliable lead time forecasting is

essential in SCM, since inaccurate estimations will lead to increased operational costs

and production issues. To address this, this thesis will implement and evaluate a data-

driven method for forecasting supplier lead times. The performance of these models

will be evaluated against actual lead times and compared to the accuracy of the supplier-

provided estimates.

2

1 Introduction

1.5 Goal

This thesis explores the use of state-of-the-art machine learning algorithms to predict

actual lead times based on historical and situational data. Instead of focusing on one ML

model and optimizing its performance metric, three distinct models will be implemented

to address the challenge. Which of the models are most suited for this type of regression

task, will also be evaluated. The nature of this report will be exploratory rather than

exploitative, primarily due to the absence of related research on the subject.

1.6 Research Questions

• Can a machine learning model accurately predict the actual lead time of a com-

pany’s suppliers using historical lead-time data?

• Which of the selected machine learning models performs best in predicting sup-

plier lead times, based on various metrics?

1.7 Methodology

In this thesis, a standard ML-pipeline [5] has been followed. It includes data acquisi-

tion, preprocessing, feature engineering, model development, and evaluation. Historical

order and product data were used to train and test the models. The dataset were cleaned

and filtered to ensure quality, and relevant features were engineered to further improve

the models performances. Grid Search with Cross-Validation (GridSearchCV) was used

to tune the hyperparameters, and the models were evaluated with MAE, RMSE, and

R2-score. For the NN, Cross-Validation (CV) was also utilized to assess how well the

models generalized.

1.8 Delimitations

In this report there are several delimitations applied to narrow the scope of the project;

• Only the external supply chain will be incorporated in the research.

• Only materials ordered to the Parts and Service division at Epiroc Örebro will be

considered.

• Only data from 2024 will be used in order to make sure the data is still relevant.

• This thesis will only consider three different models, to make the scope more

manageable.

3

2 Literature Review

2 Literature Review

Recent research has begun to address the application of ML to predict lead times in

external supply chains. During the literature review a few relevant research articles

and theses were found. The research explained below uses similar methodologies when

building ML models, even though they are utilized in different fields.

A study conducted in the German machinery industry investigates the utilization of

ML regression models to predict delivery delays for low-volume, high-variety products

[4]. The authors developed and evaluated models using real-world data, comparing

various ML approaches. The results show that regression models can predict not only

whether a delivery is going to be late or not, but how long that delay will be in number

of days. The study highlights the usefulness of having accurate predictions early in the

procurement process.

Another relevant study was conducted at a semiconductor manufacturing company

[6]. This research compares several ML algorithms, such as Support Vector Regres-

sion, k-Nearest Neighbors, RF, and NN to forecast lead times of a complex production

system. The research highlights the importance of combining both static features (prod-

uct and customer information) and dynamic features (work-in-progress and equipment

status) to improve prediction quality.

The use of ML to solve regression issues in real-life scenarios is widely used in vari-

ous fields. The medical field has seen a significant increase in the use of ML algorithms

to improve the efficiency of its processes. One particularly interesting study [7] relevant

to this thesis employs a RF algorithm to predict the length of stay of patients based on

a number of variables. It focuses on a regression problem to predict how many days a

patient will spend in the hospital, meaning the output is a continuous numerical value

as in this thesis.

Another interesting study [8] concerns using ML to make data-driven delay predic-

tions in order to optimize supplier selection. In this research, ML algorithms such as RF

and XGBoost are used to predict whether a supplier will deliver on time or not.

This thesis will explore the use of ML for predicting external lead times of the com-

pany’s suppliers, using historical and relevant contextual data. The output of the model

will be a continuous numerical value, which means it is a regression task. The literature

has shown that for this kind of regression task, either XGBoost or RF are most suitable.

Other prominent research has made it evident that NNs are also relevant to this kind

task, which is why this will be tested as well.

Using NNs to predict continuous values has shown promising results, as shown in

’Estimating Real Estate Selling Prices using Multimodal Neural Networks’ [9]. This

thesis investigates the use of NNs to predict real-estate selling prices based on both tab-

ular data and image data. The results show that NNs using tabular data can be highly

effective at making accurate predictions regarding numerical values. This research is

directly relevant to this thesis, as predicting external lead times produces a continuous

4

2 Literature Review

numerical value, just as real-estate selling prices. The success of using NNs for esti-

mating the prices, supports the notion that it could also be applied in a supply chain

context.

5

3 Theory

3 Theory

This chapter will give context to the principles used in this ML project. Theory about

ML models, methods, and other relevant subjects will be described to fully understand

the content of the thesis.

3.1 Supply Chain Lead Times and Their Impact

The term lead time generally refers to the time between the start of a process and its

completion [2][10]. However, its exact definition varies across disciplines such as man-

ufacturing, software development, and supply chains. In the context of SCM, lead time

typically denotes the duration between when an order is placed and when the goods are

received [2]. This thesis specifically focuses on supplier lead time, defined as the time

from when a purchase order is released until the production of the order is completed

and ready for shipment.

Accurate estimation of supplier lead times plays a crucial role in several core supply

chain functions:

• Inventory Planning: Safety stock levels are often calculated based on the ex-

pected lead time and its variability. Inaccurate lead time forecasts can lead to

either material shortages which might lead to production stops, or excess inven-

tory levels, which will generate costs [2]. Accurate inventory planning enables the

avoidance of unnecessary costs and the reduction of operational inefficiencies.

• Production Scheduling: Supplier lead time deviations can disrupt production

planning by delaying the arrival of critical components or materials. In companies

that rely on just-in-time or lean production systems, even minor lead time delays

can create bottlenecks that halt production [2]. These disruptions may lead to

planners having to reschedule jobs, shift workloads, or idle machines and labor,

all of which increase operational costs. Such uncertainties make it difficult for a

company’s ability to reliably fulfill their obligations [10]. In complex production

systems, the disruptions may have effects downstream, turning initially minor

issues into significantly larger problems.

• Customer Service Levels: Reliable customer service in supply chain operations

is closely tied to the ability to meet promised delivery dates [10]. When a com-

pany has a hard time estimating its production lead times, downstream delivery

commitment becomes hard to uphold. This can harm customer trust and satisfac-

tion. In a business-to-business context, delayed deliveries may result in contrac-

tual penalties or cause disruptions in the customer’s production schedules. Vari-

ability in supplier lead times may also reduce the accuracy of promised delivery

schedules, making it harder for sales or planning systems to provide reliable order

6

3 Theory

estimations [10]. To tackle this issue, many companies compensate by inflating

promised lead times [3] to avoid late deliveries, but this creates inefficiencies like

early deliveries and excessive inventory levels.

Traditional lead time estimate methods often rely on static supplier-provided values

or historical averages [10]. However, these estimates fail to capture the complex dy-

namic patterns which influences the delivery accuracy, such as order size variability,

geopolitical situation, or global supply chain disruptions. ML offers more sophisticated

methods to predict lead times [11].

Modern supply chain strategies focus on flow by prioritizing speed, flexibility, and

responsiveness to thrive in the increasingly complex global market [12]. Lead time

variability is widely recognized as a major contributor to operational uncertainty and

costs [13].

To reduce these uncertainties and maintain lean operations, it is essential to improve

the accuracy of lead time predictions [11]. The traditional lead time estimate methods

lack the ability to capture underlying patterns in complex relationships and often fail to

adjust to contextual changes or supplier reliability [14]. ML is a powerful alternative to

these static traditional methods.

3.2 Machine Learning

ML is a subcategory of Artificial Intelligence (AI) that focuses on the development of

algorithms that are able to automatically identify patterns in data and make predictions

without being explicitly programmed for each individual task [15]. By incorporating

more data into the learning process, the model’s ability to make accurate predictions

increases. Usually, ML is divided into three categories:

• Supervised Learning: Involves training a model utilizing a labeled dataset, where

both input features and output targets are known [16]. Commonly utilized for

classification and regression tasks.

• Unsupervised Learning: Utilizes unlabeled data to identify underlying patterns,

groupings, and structures within the dataset [17].

• Reinforcement Learning: Utilizes a learner that improves its decision-making

by interacting with an environment and receiving feedback in the form of rewards

or penalties [18].

This thesis uses supervised learning methods because the dataset available contains

both input features and known outcomes.

One of the central challenges in ML is to achieve good generalization, meaning that

the model performs well not just on the training data, but on new unseen data as well.

7

3 Theory

This is known as the bias-variance trade-off [16]. If a model has high bias, it is typ-

ically too simple and may not capture the underlying patterns in the data, leading to

underfitting [17]. A model with high variance is overly complex and sensitive to noise,

often resulting in overfitting. Balancing these two characteristics is crucial for building

reliable and robust models.

3.3 Supervised Machine Learning

Supervised ML is a category of algorithms with the purpose of learning patterns from

labeled data, unlike unsupervised ML where the data is not labeled [15]. The training

data used by the model consists of examples that illustrate the relationship between

input variable x and output variable y. A mathematical model will be used to fit the

training data and then predict the output y of an unknown set of data, from which only

x is known.

In many cases, providing arbitrary explanations of the relationship between the input

and output may prove challenging. In these cases a supervised ML approach is to be

advised. Supervised learning is distinguished by a dataset having labeled data, in other

words the training data consists of an input-output pair [19]. The objective of the model

is to learn a function which provides the correct output to the input, enabling accurate

predictions on new, unseen data.

Mathematically, the training set is represented as:

T = (xi, yi)
n

i=1 (1)

xi stands for the input vector, yi represents the corresponding output label, and n stands

for the number of data points. The purpose of the dataset is to obtain as much infor-

mation as possible from the training data. There are two types of supervised learning,

classification and regression, which are distinguished by the type of output y. In a ML

model which uses regression, the output is always numerical, while for classification

the output is categorical [19]. The primary goal for a regression model is to learn to

approximate the true function f(x), such that:

y = f(x) + ε (2)

where ε is an error term that visualizes the noise in the data. The output yi is assumed

to be a scalar value. For classification tasks, the goal is to predict categorical labels.

Instead of getting a numerical value as in a regression task, the model is estimating the

probability distribution:

P (y|x) = f(x) (3)

f(x) represents a function that outputs the probability of each class.

8

3 Theory

3.4 Tree-Based Methods

In this section different kinds of tree-based algorithms will be described. These different

methods can be used for either regression or classification problems. The models are

hierarchical, which creates a tree-like structure [15]. Each node represents a decision

based on a specific variable, and when a node has no further splits its assigned value

becomes the prediction. When making predictions, the model assigns a value based on

the mean of the observations in that prediction region for regression, or the mode for

classification tasks. Tree-based methods are generally used in situations when simplicity

and interpretability are important.

3.4.1 Decision Trees

A decision tree is a supervised ML model which involves defining a set of rules that

segments the predictor space into different regions [17]. There are two different types

of decision trees, regression trees and classification trees. In this thesis, only regression

trees are relevant, and therefore, they will only be described.

The term decision tree originates from its visual appearance of an inverted tree-like

structure. It begins with one root node that is connected via branches to internal nodes,

and when an internal node has no more branches, it is called a leaf, which indicates the

end of that specific path. The initial step in building a decision tree involves splitting

the predictor space at the root node, followed by additional splits at each internal node.

As more nodes are added, the predictor space will be split into smaller non-overlapping

regions, which can result in more precise predictions [17].

9

3 Theory

Figure 1 Example of a Regression tree. The tree’s base is the root node and splits the

predictor space using based on variables X1 and X2. Every decision sequence results

in a region Rj , where a prediction is made using the average of the observations in that

region.

In a regression tree, the predictor space is split into a set of specific regions. x1,

x2,..., xn represents the predictor variables [16]. Each xi represents a specific value

of a predictor variable that defines a region within the tree. The algorithm divides the

predictor space into j regions, each of which will be referred to as R1, R2,..., Rj .

10

3 Theory

Figure 2 This simple predictor space reflects the regression tree in Figure 1. Every

split of the predictor space is represented by a boundary in the two-dimensional space.

It is divided into regions R1, R2, R3, by the binary decision rules, where each region

represents a leaf in the regression tree.

In each region Rj , the predicted output is given by the mean value of each observa-

tion that is within that region [17]. As an example, our predictor space consists of three

regions, R1, R2, R3. The mean response for the region R1 is 55, for R2 it is 50, and for

R3 it is 75. If a new observation X ∈ R1, then X will be predicted to be 55, however, if

X ∈ R2 then X will be predicted to be 50, and if X ∈ R3, the model will predict 75.

To simplify the interpretation of a regression tree, the different regions R1, R2,...,

Rj can be divided into a set of high-dimensional rectangles. The goal is to find regions

which minimize the Residual Sum of Squares (RSS), which can be defined as:

J
∑

j=1

∑

i∈Rj

(yi − ŷRj
)2 (4)

Here, ŷRj
represents the mean response for the data points in Rj . Since it is not

computationally feasible to evaluate all possible regions of the predictor space, one has

to use a top-down, greedy approach known as recursive binary splitting. Initially, the

predictor space is treated as a single region containing all data points. The first split

occurs at the root node, dividing the predictor space into two regions. This process is

repeated iteratively, making the regions smaller and more refined [15]. The splitting

process consists of choosing a predictor variable Xj and a threshold s which results in

the optimal split of the predictor space. The goal is to split the data into two separate

regions that have a minimal residual sum of squares. The two regions which are a result

from the split can be defined as:

11

3 Theory

R1(j, s) = {X | Xj < s}, R2(j, s) = {X | Xj ≥ s} (5)

When applying the algorithm, the goal is to find the values of j and s that minimize

the equation, and this is defined as:

∑

i:xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i:xi∈R2(j,s)

(yi − ŷR2
)2 (6)

ŷR1
and ŷR2

represents the mean response value of the training observations in the

regions R1 and R2. By choosing the predictor and split point that minimize the sum,

one ensures that the variance in each region is as low as possible [16].

This process is iterated, continuously splitting the resulting regions to minimize the

residual sum of squares. Instead of splitting the entire prediction space at every iteration,

only one of the previously split regions is chosen for additional division. This continues

until a stopping criterion is met, which has been decided on beforehand [17].

Once the stopping criterion is met, the final regions R1, R2,..., Rj are established.

The training of the model is complete, and predictions can be made. To make predictions

for new data, the model determines which region the observation falls into based on the

learned splitting rules, and then assigns it the mean value, ŷRj
, of that region [15].

3.4.2 Random Forests

RFs are an improvement of Bagging, which combines a set of decision trees that have

been trained on bootstrapped samples. The purpose of Bagging, also known as bootstrap

aggregate, is to reduce variance, which is common when using decision trees. Bagging

creates several trees, each trained on randomly selected subsets of the training data,

and then combine their predictions into one final decision [16]. One common issue with

bagged trees is that strong correlations between trees might occur, since they often select

similar splits in each tree based on the same criterion, such as MAE in regression tasks.

This is what RFs are aimed to solve. By introducing random elements when creating

the decision trees, the correlations between the trees will be reduced [20].

When training a RF-model, instead of being able to choose from all possible input-

variables x1, x2,...,xp as in Bagging, each split is made using a random subset of vari-

ables, containing q ≤ p variables. This will be done at each splitting point, having a

different subset of possible variables at each node. These random subsets of variables

are done independently for the various trees in the ensemble. The trees in the ensemble

are then averaged to produce a final prediction. By doing these steps, randomness is

introduced into the model and in turn should reduce both overall model variance and

correlation between the trees [16].

12

3 Theory

3.4.3 Gradient Boosting

Gradient Boosting is an improved version of traditional boosting algorithms, which train

multiple weak ML models in sequence by iteratively improving the errors of their pre-

decessors [21]. While the foundation of Gradient Boosting lies in the generic concept of

Boosting, which revolves around the idea that even weak, high-bias models can capture

some patterns in the data [17]. In contrast to Bagging, Boosting aims to reduce bias by

building models in sequence rather than in parallel.

To intuitively grasp the concept of Gradient Boosting think of it as a method that

builds models in sequence [21], where each one is trained to learn from the previous

one’s mistakes just as in generic Boosting. Each new model is then trained to correct

the errors of the previous one by moving in the direction of the loss function’s steepest

descent, in other words the negative gradient [17]. By iteratively applying this process,

the model becomes more accurate, and the error effectively decreases over time.

A widely used and more advanced implementation of this approach is XGBoost,

which is discussed in the following section.

3.4.4 eXtreme Gradient Boosting

Much like the RF algorithm, gradient boosting trees are based on decision trees. XG-

Boost is a scalable and efficient implementation of gradient boosting. While traditional

gradient boosting builds an ensemble of weak models sequentially, XGBoost imple-

ments several engineering and algorithmic optimizations [22], like regularization, par-

allel tree construction, and efficient handling of sparse data.

From a mathematical perspective, XGBoost is a powerful implementation of gradient

boosting designed for efficiency and scalability [22]. Much like other gradient boosting

algorithms it builds an additive model [23]. The final prediction is the sum of base

learners;

ŷi = ϕ(xi) =
K
∑

k=1

f(xi), fk ∈ (F), (7)

In this context, F =
{

f(x) = wq(x) | q : Rm → T , w ∈ R
T
}

, where each f(x) rep-

resents an individual regression tree. q(x) defines the structure of the tree by assign-

ing an x to a leaf index, and w determines what output value the model will produce.

Each tree contains T leaves. The output of f(x) which is a weighted sum of the basis

functions, can be used as a prediction. The main objective is to find the ϕ(xi) which

minimizes the loss function:

J(f(X)) =
1

n

n
∑

i=1

L (yi, f(xi)) (8)

13

3 Theory

Where L represents some differentiable loss function. For regression tasks, the most

popular choice would be Mean Squared Error (MSE), given by L(y, ŷ) = (y − ŷ)2.
However, when using XGBoost a regularization term is implemented into the objec-

tive function to avoid overfitting and improve generalization [23]. This term penalizes

model complexity by punishing deep trees and extreme leaf weights. The final objec-

tive value represents the total loss of all trees, along with a penalty term for each tree

to prevent overfitting [22]. To minimize the regularized objective function one uses the

formula:

L(ϕ) =
n

∑

i=1

ℓ(ŷi, yi) +
K
∑

k=1

Ω(fk) (9)

The regularization term promotes simpler trees and thereby reducing overfitting by

implementing the following penalty term:

Ω(f) = γT +
1

2
λ∥w∥2 (10)

As in formula (A.1), T represents the number of leaves in the tree, w is the vector of

leaf scores, γ is a parameter which regulates the number of leaves, while λ punishes the

amount of leaf weights.

Since it is computationally unfeasible to directly optimize the space of trees, XG-

Boost uses the same additive training method as Gradient Boosting, where the trees are

added sequentially to improve the errors of the previous tree [23].

14

3 Theory

3.5 Feedforward Neural Networks

A Feedforwad Neural Network (FNN) is the most fundamental type of NN. It may

also be called a Multilayer Perceptron [24]. The name FNN originates from how the

information moves in one direction through connected layers, from the input layer to

the output layer. The concept of NNs lies in how the human brain operates. It consists

of neurons and layers, connected via weighted links that transport signals from one layer

to the next.

The goal of a FNN, like other ML algorithms, is to approximate some unknown

target function f ∗(x) as accurately as possible [16]. The model learns by optimizing the

parameters in order to achieve the best possible approximation of the target function.

The target function can represent either a classification or regression task, however,

within the scope of this thesis only a regression variant of FNN will be described.

A regression FNN can be seen as an extension of a linear regression model, capable

of capturing more complex nonlinear patterns [25]. The output layer will typically

consist of a single neuron with an activation function, which results in a continuous

numerical value.

The network is fed with an input-vector X = [x1, x2, ..., xn], which is passed to the

first hidden layer. Each neuron in the first layer computes the weighted sum of all the

inputs [16], which is followed by passing the sum into a non-linear activation function.

The number of layers, L, in a FNN can be defined as l ∈ [1, 2, ..., L]. The computa-

tion done at each layer is [26]:

q(l) = h(W (l)q(l−1) + b(l) (11)

Where W (l) represents the weight matrix linking the current layer to the next layer,

b(l) is the layer’s bias vector, h(l) is the activation function, and q(l) is the output vector

of the layer.

To make it more concrete, a FNN containing one input-layer, two hidden layers, and

one output layer will be used to illustrate the concept. The network can be expressed as

follows;

q(1) = h(1)(W (1)X + b(1)) (12)

The output of hidden layer 1 is subsequently passed to the next hidden layer as input-

vector [26].

q(2) = h(2)(W (2)q(1) + b(2)) (13)

Similar computations are done with the weights, biases, and activation function for

the second layer. Once the computations are done in the second layer, the output-vector

is sent to the output-layer, which can be described as [26];

15

3 Theory

ŷ = W (3)q(2) + b(3) (14)

Here b(3) is a scalar bias term. It can be seen in this function that there is no h(l)

present, this is because in regression tasks the output layer produces a continuous value

which should remain untouched [16]. This represents a simple FNN, however, in theory

the number of layers is arbitrary.

Figure 3 This image represents the network explained in equations 12 - 14. It contains

one input layer, two hidden layers, and one output layer. This figure was inspired by

the diagram in [16]. Out of each neuron in the first and second hidden layer, an output

value will be gained. This is as previously mentioned, denoted as q(l).

3.5.1 Activation Functions

In a FNN, each neuron applies an activation function to its input value. This introduces

non-linearity, which is essential in order to capture complex patterns in the data [27].

If no activation functions are present, the FNN would behave as a single-layer linear

model. There are several activation functions available, Sigmoid, Tanh, and Rectified

Linear Unit (ReLU) [27]. Sigmoid and Tanh functions are most commonly used in clas-

sification tasks, particularly in output layers, while ReLU serves as the most regularly

used activation function in the hidden layers, regardless of the type of task.

16

3 Theory

3.5.2 Rectified Linear Unit

The Rectified Linear Unit, also known as ReLU, is one of the most common activation

functions utilized in FNNs [24]. It is defined as;

ReLU(z) = max(0, z) (15)

where z denotes the input value. In the context of a FNN, it translates to the following

equation;

ReLU(z) = max(0,W · x+ b) (16)

here W is the weight, x represents the input, and b is the bias. The ReLU func-

tion returns all negative values as zero, while positive values stay unchanged [27]. The

simplicity of this activation function makes it more computationally efficient, and min-

imizes the vanishing gradient problem, which is a common issue in FNN models [24].

Figure 4 Visualization of the Rectified Linear Unit (ReLU) activation function. Source:

[24].

3.5.3 Training a Neural Network

Training a FNN revolves around adjusting the model’s parameters to minimize the pre-

diction error. This process uses an objective function, also known as loss function,

that measures the difference between the predictions compared to the true values [28].

17

3 Theory

When facing regression problems, the objective is typically defined by a loss function

that measures the difference between output ŷi and the true value yi.

One of the most frequently used loss functions is MSE [29], described in equation

18. By squaring the error, the larger values will be more penalized, making the function

more sensitive to outliers. However, when a problem does not require the same level of

sensitivity to outliers [29], MAE is often utilized. MAE calculates the average of the

absolute values of errors that a model produces, as explained in equation 20.

In FNNs, the minimization of the objective function is typically achieved by im-

plementing gradient-based optimization methods [28]. The most common methods are

Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). A gra-

dient based optimization algorithm, utilizes the gradient of the objective function to

iteratively improve the model’s parameters to reduce the error.

Before computing gradients, the network performs a forward pass, which is ex-

plained as sending the input data through the FNN to make a prediction [24]. The error

calculated from this prediction is later used in the backpropagation method to update

the model’s parameters.

3.5.4 Backpropagation

To be able to implement the gradient-based methods mentioned in section 3.5.3, it is

essential to compute the gradients of the loss function with respect to each parameter in

the FNN. The backpropagation algorithm enables this [28].

Backpropagation is a method for efficiently computing these gradients by utilizing

the chain rule [30]. The algorithm propagates backwards in the network, starting at

the output layer where the error is computed. As the error is passed backwards in the

network, the gradients of all weights and biases are computed, providing insight into

how much each of the parameters is contributing to the overall loss [30].

During the backward pass, the network utilizes what has been learned during the

forward pass, such as how strongly each neuron is activated or what inputs it received.

These stored values will aid in helping the network understand how much each param-

eter influenced the final output and the required adjustments needed to reduce the error

[28]. By utilizing this information, the model becomes more efficient as it avoids mak-

ing redundant computations, making the training process significantly more efficient.

Backpropagation is not to be mistaken for an optimization method in itself, however,

it serves as an important mechanism in computing gradients efficiently in algorithms

like SGD or Adam. The optimization and regularization methods utilized in this thesis

are described under appendix sections B to E.

18

3 Theory

3.6 Early Stopping

Early stopping is a widely used regularization technique in deep learning that helps

prevent overfitting and improves generalization. This method works by monitoring the

model’s performance on a validation set during training and stopping the training pro-

cess if the validation error begins to increase, which is an indication of overfitting [26].

This technique helps limit the complexity of the model, without changing the model

architecture. The number of training steps can be interpreted as a regularization hyper-

parameter. By stopping the training process early, the model avoids fitting noise in the

training data, therefore reducing the variance. In practice, this involves saving the opti-

mal model parameters which results in the lowest validation error and restoring them at

the end of the training process [26].

3.7 K-fold Cross-Validation

K-fold CV is a resampling method used to measure the performance of the model. The

data is randomly split into k-number of equally sized subsets, also called folds [31]. In

each iteration of the method, one of the folds is used as a validation set, also known as

the held-out fold, while the model is trained on the remaining folds. In each iteration,

the validation error is recorded and after all k-folds have been utilized as the held-out

fold, the average of these errors is computed. This error is denoted as Ek−fold, which is

an approximation of the model’s test error on unseen data. The equation for the k-fold

CV error can be defined as [16]:

Ek−fold =
1

k

k
∑

l=1

E
(l)
hold−out (17)

where l denotes the specific iteration, Ehold−out is the error, k is the number of folds

the dataset is split into. The image below visualizes the process:

19

3 Theory

Figure 5 This figure visualizes how the dataset is split into k-folds for CV. The mean

of each Ehold−out summed together gives the estimated test-error on new unseen data.

Image source: [16].

K-fold CV is commonly used since it eliminates the need to have a separate valida-

tion set. Instead, it allows for the model to train on the complete dataset, resulting in

better utilization of the provided data [31]. Most commonly, the dataset is divided into

5-folds or 10-folds.

3.8 Model Evaluation

Once the model training is complete, it is essential to evaluate the model’s performance

using previously unseen and unbiased data. The evaluation metrics quantify how well

the model has generalized outside the training data [29]. A wide range of metrics for

ML are available, each suitable for different types of tasks. As this project is based

on a regression problem, appropriate metrics for continuous predictions are used. For

this project, it is important that the evaluation metric is measuring the distance between

predicted and actual values, in other words, measuring the residuals produced by the

model [29]. The metrics used in this project are MSE, RMSE, MAE, and R2.

20

3 Theory

3.8.1 Mean Squared Error

MSE quantifies the average squared differences between the predicted and the true val-

ues in a dataset [31]. Squaring the residuals and then taking their mean of each one in a

dataset results in the MSE. Once the MSE has been computed, it is used as an indicator

of the model’s predictive accuracy. Lower values indicate better model performance.

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (18)

yi represents the true value, ŷi is the predicted value and N is the number of data

points in the dataset. The summation calculates the residual for each data point, divided

by the number of data points results in the MSE.

3.8.2 Root Mean Squared Error

RMSE is another commonly used metric when evaluating the performance of regression

models. It is computed by taking the square root of MSE [29]:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (19)

The notations are the same as those used in the definition of MSE, (18). Typically,

RMSE is used when a more interpretable result is desired. It uses the same unit as the

target variable, which makes the error easy to interpret. RMSE penalizes large errors

more heavily [29].

3.8.3 Mean Absolute Error

MAE is a metric used to evaluate the accuracy of regression models. Similar to MSE and

RMSE, it measures the average error in predictions [16]. However, instead of penalizing

larger errors more heavily like MSE and RMSE, MAE computes the average of the

absolute differences between predicted and actual values. It can be defined as [29]:

MAE =
1

n

n
∑

i=1

|yi − ŷi| (20)

MAE is particularly valued for its interpretability, as it represents the average abso-

lute error of predictions compared to the actual values in the same units as the target

variable [29]. This makes it an accessible and intuitive choice for evaluating model

performance.

21

3 Theory

3.8.4 Coefficient of Determination

The R2 is an evaluation metric which assesses how well a model explains the variability

present in the target variable [31]. It represents how well the variance in the target

variable is explained by the model. The result ranges from [−∞, 1], where 1 indicates

perfect predictions, a value of 0 indicates the model does not predict any better than a

simple prediction based on the mean of the target variable [29]. If the value is below 0,

it indicates the model performs worse than predictions made on the sample mean.

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n

i=1(yi − ȳ)2
(21)

Here, the same notations in are utilized as in equation (18), ȳ represents the mean of

the actual values. The numerator represents the unexplained variance, also referred to

as the residual sum of squares. The denominator is the total variance in the data, also

known as total sum of squares [29].

22

4 Method

4 Method

Initially, the scope of the project was determined by a basic understanding of the prob-

lem. However, as the problem was explored and discussed with all involved parties, a

clearer understanding emerged. This led to iterative changes to the project’s scope until

a final problem description could be agreed upon.

This iterative process continued throughout the project to achieve the best possi-

ble outcome. To ensure a scientific approach, a widely accepted methodology from

the field of ML was adopted [32]. Specifically, the methodology followed was a gen-

eral, well-established ML-pipeline framework [5]. The following eight steps formed the

foundation of the research:

1. Data Collection: The initial step in the ML-pipeline, involves gathering the data

required to train the model. This data can be collected from various sources,

such as a company’s internal database, data warehouses, or external APIs. At this

stage, the data is typically in its raw and unstructured format, and may contain

inconsistencies, missing values, or noise. Therefore, preprocessing is required to

ensure that the data is suitable for analysis and model training [5].

2. Data Preprocessing: Usually, the raw data obtained are not directly usable,

which is why it requires cleaning, transforming, and preparing for modeling [33].

This step consists of handling missing values, encoding categorical features, scal-

ing numerical values and splitting the dataset into training, validation and testing

sets.

3. Feature Engineering: In this step, new features are created based on the original

features in the dataset [32]. These new features are aimed to improve the model’s

predictive ability.

4. Model Selection: Based on the problem description, appropriate ML algorithms

are chosen. Which algorithm is chosen depends on whether it is a classification

or regression task, data characteristics, and performance requirement [32].

5. Model Training: In this phase, the chosen ML algorithm learns patterns using the

training dataset. The model learns the patterns and relationships by optimizing its

parameters to minimize the errors [16]. Different algorithms have different ways

of learning the patterns, it can involve techniques such as decision trees, gradi-

ent descent or backpropagation. A validation set is used to evaluate the model’s

performance during training.

6. Model Evaluation: Once the models are trained, the performance will be eval-

uated using the test dataset and k-fold CV. It may involve using metrics such as

23

4 Method

RMSE, accuracy and precision [29]. It uses the test dataset to test the model on

unknown data to see how well it performs.

7. Model Deployment (out of scope): Once the model achieves a satisfactory per-

formance, it is implemented into the real-life setting to make predictions [32].

This is outside of the scope of this thesis.

8. Monitoring and Maintenance (out of scope): When the model has been de-

ployed, it must be monitored regularly to ensure the quality of the predictions is

up to par. Over time, the data used to train the model may become obsolete, which

will reduce the performance of the model [32]. This is, however, outside of the

scope of the project.

As previously mentioned, an iterative approach was adopted during the development

of the ML models, and it was concluded once the performance metrics reached a level

the customer deemed acceptable for company utilization.

As illustrated in figure 6, the scope of the thesis is confined within the bounds of

the ML-pipeline. The two last phases; Model Deployment and Monitoring and Mainte-

nance fall outside of the scope and are therefore not addressed.

The process of building a ML model is inherently iterative. At first, the ML-pipeline

follows a sequential workflow. While the pipeline initially follows a sequential flow,

the results of model evaluation might reveal discrepancies in its performance [32]. As a

counter-measure, the process may loop back to earlier stages, specifically: data prepro-

cessing, feature engineering, and model training. By adjusting the input data, creating

new features, or tuning hyperparameters, the performance might be improved. These

specific steps were chosen for iteration because they can directly increase the results of

the models, without changing the scope of the thesis.

24

4 Method

Figure 6 Visualization of the full pipeline used to build and train the models in this

thesis.

25

4 Method

The programming language used to develop the ML models was Python, with devel-

opment conducted in Visual Studio Code (VSC). Several libraries and frameworks were

used in model design, such as PyTorch, Scikit-learn, Pandas, Numpy.

4.1 Acquisition and Exploration of Data

To obtain the data used for developing the ML models, close collaboration with Epiroc

was required. The data was not publicly available, thus it had to be extracted directly

from the company’s internal information system. Initially, Epiroc exported an order

dataset which contained 29 unique features, including order numbers, agreed lead times,

actual lead times, order dates, quantities, and other related attributes. A second dataset

was acquired, containing product-specific information, holding features such as product

IDs, product names, product categories, weight, among others. Both datasets were

provided in tabular format.

Merging these two datasets into one was necessary to make it suitable for ML use.

The order dataset was used as the base, and the product dataset was merged by using the

product ID as identifier. This integration ensured that each row in the dataset contained

relevant product information, providing the model with additional features to learn from.

Following the merge, the number of features amounted to 39 features. The order

data consisted of approximately 400 000 distinct orders spanning from 2022 to early

2025. Each row represents a unique order and includes information such as whether the

order was completed on the agreed delivery date, the actual lead time, and the quantity

ordered.

4.2 Preprocessing

A significant part of developing ML models involves data preprocessing. At the be-

ginning of most projects, datasets are typically unstructured, noisy, or incomplete, and

therefore require cleaning and formatting before they can be used for ML purposes [32].

It is important to note that this phase is highly dependent on the nature of the problem

and the structure of the available data. Each ML task may present unique challenges,

requiring specific preprocessing steps based on the specific structure of the dataset.

4.2.1 Handling Inconsistencies

The first step in the preprocessing process involved cleaning the dataset by convert-

ing dates to standardized date-time format and handling inconsistencies, like varying

decimal formats in numeric fields. It also involved standardizing column names by

converting all headers to lowercase for consistency.

26

4 Method

4.2.2 Time-frame Filtering

The dataset acquired from Epiroc spanned the years 2022 to 2025. These years differed

greatly in a supply chain perspective. In 2022, global supply chains were significantly

disrupted due to the Covid-19 pandemic, which led to widespread lockdowns and dis-

ruptions in logistics and production networks [1]. In more recent years, specifically

2024, supply chains have begun to stabilize, resulting in shorter and more consistent

lead times.

Given this context, the data acquired from the years 2022 to 2023 are less represen-

tative of the current logistics environment. Therefore, a filter was applied to limit the

training data to only include data from 2024.

Figure 7 Visualization of the number of data points before and after applying the year-

based filter. The dataset was reduced from 410,749 to 107,145 inputs after removing

inputs outside the target year range.

4.2.3 Missing Values

When working with ML algorithms, it is generally impossible to utilize rows which

contain cells with missing values. Either the missing values needs to be imputed, or

removed from the dataset [34]. In this study, imputation was avoided since the missing

values in the dataset were found in features such as product weight and supplier num-

ber, which are specific and unique to each row. These characteristics made imputation

impractical and potentially misleading.

Rows that contained missing values in the product weight field were therefore dropped.

Additionally, there were several companies lacking specific supplier numbers. In these

cases, missing values were resolved by mapping them based on their specific supplier

name.

27

4 Method

4.2.4 Frequency Threshold

To improve the robustness and the ability to generalize of the ML model, suppliers with

a very low number of historical orders were excluded from the dataset. Suppliers with

limited data could introduce noise and outlier behavior, which might cause the model to

overfit and worsen its prediction capabilities. Therefore, a threshold of 100 orders was

put in place, to minimize the variance introduced by these low frequency suppliers.

4.2.5 Outlier Detection

In large datasets, as the one used in this thesis, it is highly probable that there are outliers

in the data. These outliers consist of extreme values that do not represent the patterns

within the data. To improve model reliability, Z-score outlier detection was applied to

the target variable, Actual Lead Time.

Observations with a Z-score value larger than 2 were deemed as outliers, and subse-

quently removed from the dataset. The value 2 was chosen as a threshold since it results

in approximately 95% of the data, with the assumption that the data follows a normal

distribution. By removing the extremities, the model will be trained on data which bet-

ter represents the underlying patterns, and reducing the risk of the model being skewed

by anomalies.

Figure 8 Number of rows before and after applying Z-score filtering. The dataset were

reduced from 87,144 to 83,122 rows by removing statistical outliers.

4.2.6 Feature Engineering

In the field of ML, enhancing the dataset through the creation of new features by us-

ing existing ones is a valuable strategy for improving model performance. The first

engineered feature was time-based and named ’Planned Delivery Month’. This vari-

able converted the order date into a monthly format to capture underlying seasonal or

monthly patterns in lead times.

28

4 Method

To further enhance the model’s ability to predict the actual lead time, features were

introduced to quantify the historical variability of both suppliers and product groups.

These new features indicate how consistent a specific supplier and product category has

been historically.

4.2.7 Categorical and Textual Features

ML models require numerical input values, therefore making it necessary to transform

the categorical and textual features into a numerical format prior to training. For cat-

egorical variables, label encoding was employed. This technique assigns each unique

category a specific integer, allowing the feature to be used effectively by the model. La-

bel encoding was applied to the following features: supplier country, supplier number,

item group, and planned delivery month.

For textual features such as stock availability code and dispatch advice, binary map-

ping was used. These variables were converted into binary values (0 or 1) based on their

intended meaning, enabling the model to interpret them during training.

4.2.8 Feature Reduction

The large number of features in the acquired dataset required strict filtering. Many of

the original features were found to be redundant, irrelevant, or correlated with others,

which could lead to overfitting or reduced model performance [31].

To determine which features should be retained in the preprocessed dataset, both

correlation analysis and feature importance scoring were applied. A correlation matrix

was used to identify heavily correlated features, giving justification to their removal. To

analyze whether a feature contributes with usable information when training the model,

feature importance scores were used.

These were obtained during the training of preliminary models. In the final model,

various combinations of features were evaluated to identify the most relevant subset.

The use of both statistical and model-driven techniques provided sufficient evidence for

selecting the most informative features.

By reducing the number of features, the training of the model becomes more effi-

cient, less noise is implemented, and improves generalization.

4.3 Selected Features for Model Training

After preprocessing and feature engineering, a set of features were carefully selected.

These features were chosen based on domain knowledge, data availability, and their

potential to improve predictive performance. The final set includes both original and

feature engineered variables:

• Agreed lead time: The annually fixed lead time estimated by the supplier.

29

4 Method

• Dangerous goods binary: A binary feature which indicates if the product is

classified as dangerous goods.

• Stock availability code binary: Indicates whether an item is available for imme-

diate delivery or if it has to be ordered.

• Weight: The weight of the individual product in the order.

• Quantity: The number of units ordered.

• Supplier country (encoded): Displays which country a supplier is located in. It

is encoded numerically.

• Item group (encoded): Encoded label representing the item’s product group.

• Supplier number (encoded): A unique identifier for each supplier. It is numeri-

cally encoded.

• Supplier mean lead time: Historical average lead time per supplier, representing

variability in past deliveries.

• Item group mean lead time: The historical average for each item group.

• Planned delivery month (encoded): Extracted from the order date to capture

seasonal patterns.

• Supplier lead time standard deviation: The historical variability of lead times

for each supplier. It captures how reliable and consistent the specific supplier has

been.

• Item group lead time standard deviation: The historical variability of lead

times within each product group.

The target variable for all models was the actual lead time, which is measured in

days between the order date and when the supplier has finished production.

4.4 Model Selection

The models selected for this thesis are RF, XGBoost, and FNN. These models were

chosen based on the characteristics of the dataset and their demonstrated performance in

similar regression tasks, mentioned in section 2. The data consists of tabular, structured

features including order date, quantity, weight, agreed lead time, supplier number, and

historical lead time variance. To predict the actual lead time as accurately as possible,

appropriate models had to be chosen.

30

4 Method

RF was selected due to its ability to handle a mix of categorical and numerical data,

while also being robust to noise and capable of capturing non-linear patterns [20]. It may

also provide the ability to see the importance of specific features, which is useful for

interpretability. XGBoost was included as it typically shows high accuracy in structured

data problems, and its use of boosting to correct errors from earlier iterations. While RF

is typically easier to utilize, XGBoost allows more control and often better performance

on complex problems when properly tuned [22].

FNNs were used to evaluate whether a more flexible and high-capacity model could

find patterns in the data that tree-based models might miss. FNNs can model complex,

non-linear relationships and are effective when sufficient amount of data is available,

which was the case in this problem [24]. Techniques such as dropout and early stopping

were utilized to prevent the model from overfitting during training.

Other models such as linear regression or time series models were not selected. Lin-

ear models assume a linear relationship between features and the target [16], which is

highly unlikely in lead time scenarios. Time series models like ARIMA are designed for

continuous time-dependent data, which does not apply here since each order is treated

as an individual event [35].

4.5 Model Training

This section describes the methodology used to train the three ML models developed

during this thesis. RF, XGBoost and a FNN were trained to predict supplier lead times

using various features. To ensure that the models would perform well, the following

steps were carefully considered; Data splitting, model creation, and hyperparameter

optimization.

4.5.1 Data Splitting

The final dataset, after completing the preprocessing, consisted of 83077 data-points.

In ML, the size of the dataset plays a crucial role in the model’s ability to recognize

underlying patterns effectively [36]. To avoid overfitting and to ensure model reliability,

the dataset was divided into three separate subsets: training set, validation set, and test

set. The validation set prevents overfitting by controlling the error during training, while

the test set gives an unbiased evaluation about the model’s performance.

For XGBoost and RF, the dataset was split into three partitions, the training set

(70%), the validation set (15%), and the test set (15%). In this thesis, it was determined

that 83077 data-points, split into the three subsets, combined with early stopping was

sufficient to prevent the model from overfitting but still recognize patterns in the data.

To avoid unnecessarily high computational costs, k-fold CV was not utilized, since the

dataset’s size and separate validation set were considered sufficient to make sure the

model was reliable.

31

4 Method

Figure 9 Represents the splitting of the complete dataset, into subsets for training, vali-

dation and testing of the model. [9].

FNN typically demand large quantities[37] of data to efficiently achieve a general-

ized model. Therefore, to further introduce reliability into the model, 5-fold CV was

utilized, as described in section 3.7. Initially, the dataset was split into a training set

(85%) and a test set (15%). During training, the training set was further divided into 5

folds, resulting in approximately 17% of the full dataset in each fold.

In each iteration, one fold served as the validation set while the remaining folds were

used for training. In the next run, a new fold was used for validation. This was done

iteratively until each fold had been used once as validation set.

32

4 Method

Figure 10 Represents the splitting of the dataset into 5 folds, preparing for k-fold CV.

Inspired by [9].

4.5.2 Model Creation

After preprocessing and splitting the data, multiple models were created and evaluated.

Each model was designed to predict the actual lead time based on a carefully selected

set of input features.

The RF model employed out-of-bag estimation to evaluate how well the model was

performing during training. The hyperparameter tuning process for this model is de-

scribed in section 4.5.4. The evaluation was done using metrics, such as MAE, RMSE

and R2.

For XGBoost, early stopping was implemented to prevent overfitting by monitoring

the validation error during training. If the validation error began to increase, the training

was automatically stopped, as it indicated that the model was starting to overfit the

training data [26].

The FNN had a two hidden layer architecture, each layer utilizing ReLU activa-

tion functions. To avoid overfitting, dropout regularization and early stopping were

implemented [26]. The model was trained to minimize the MAE (L1-loss), and Adam

optimizer was used to optimize the parameters during backpropagation.

33

4 Method

4.5.3 Hyperparameter Tuning

Before training a ML model, an initial set of hyperparameters must be selected. These

settings determine how the model is trained and can significantly influence the model’s

performance. Therefore, hyperparameter tuning is a crucial step in the modeling pro-

cess. Hyperparameters can vary depending on the algorithm, for example, in tree-based

algorithms, they may include the tree depth or learning rate, while in FNNs, they may

refer to the number of layers or neurons per layer [16].

To optimize the models’ hyperparameters for each model used in this thesis, Grid-

SearchCV method was employed. This approach involves defining a grid of hyperpa-

rameter values and evaluating all possible combinations. GridSearchCV then applies

CV to provide a more reliable performance estimate of each combination. Finally, the

set of hyperparameters that yields the best performance, based on the chosen error met-

ric, is selected.

4.5.4 Hyperparameters - Random Forest

For every method, there are specific hyperparameters that can be chosen. In this section

the chosen hyperparameters for RF will be described [38]. Four hyperparameters were

chosen, n estimators, max depth, min samples split, and min samples leaf.

• N estimators: This hyperparameter decides the number of trees in the model.

Typically, a higher number will generate better performance, but the model then

becomes more computationally expensive.

• Max Depth: Determines the maximum number of levels in each tree. This pre-

vents each individual decision tree from overfitting.

• Min samples split: The minimum number of samples needed to divide a node

into two child nodes.

• Min samples leaf: This describes the least number of samples that are required

in a leaf node. For a split to be considered at a node, it has to have at least the

amount of samples as this value.

Parameter Values

n estimators 600, 800, 1000

max depth 20, 40, None

min samples split 2, 5, 10, 15

min samples leaf 1, 2, 5, 10

Table 1 The various hyperparameters tested in the GridSearchCV for RF.

34

4 Method

4.5.5 Hyperparameters - XGBoost

The following hyperparameters were selected for tuning the XGBoost [39]: n estimators,

max depth, learning rate, subsample, and colsample bytree.

• n estimators: This hyperparameter has the same function as n estimators in sec-

tion 4.5.4.

• max depth: Max depth in XGBoost is the same as in RF, described in section

4.5.4.

• learning rate: Determines how much each tree contributes to the prediction. A

low learning rate will result in a slow learning process, and might lead to the

model requiring more trees for good performance.

• subsample: This determines how large a part of the training data that is randomly

sampled for building each tree. By lowering the value below 1, randomness is

introduced which might result in reduced risk of overfitting.

• colsample bytree: The proportion of features randomly selected in the construc-

tion of each tree. If the value is 1, each tree uses all features, however, if the value

is 0.8, it utilizes 80% of the features. Reducing this hyperparameter prevents the

model from relying on strong features, which in turn improves generalization.

Parameter Values

n estimators 600, 800, 1000

max depth 6, 8, 10

learning rate 0.03, 0.036, 0.04, 0.05

subsample 0.8, 0.9, 1.0

colsample bytree 0.8, 0.9, 1.0

Table 2 Grid settings for hyperparameter tuning of a XGBoost model.

4.5.6 Neural Network

In this section, the various hyperparameters for FNN selected for GridSearchCV will be

described [40]. They consist of lr (learning rate), batch size, hidden1 (hidden layer 1),

hidden2 (hidden layer 2), and dropout.

• Learning Rate: The learning rate describes how much the weights of the model

are updated during training. If a lower value is chosen, the model will converge

at a slower pace but the training will be more stable.

35

4 Method

• Batch Size: Determines how many training samples are used in each batch.

• Hidden1: This hyperparameter decides how many neurons the first layer consists

of. More neurons in each layer results in a more complex model, which can make

it recognize more advanced patterns, but is also more prone to overfitting.

• Hidden2: Determines the amount of neurons in the second layer.

• Dropout: Randomly disables a subset of neurons when training the FNN. Uti-

lized to prevent overfitting and increase generalization.

Parameter Values

lr 0.001, 0.0005, 0.0001

batch size 128, 256, 512

hidden1 64, 128, 256

hidden2 64, 128, 256

dropout 0.0, 0.1, 0.3, 0.5

Table 3 Expanded parameter grid for FNN hyperparameter tuning.

36

5 Results

5 Results

In this chapter, the performance of the three models will be visualized. The models’

predictions will be compared to the baseline predictions currently used by the company,

in order to evaluate if the models offer improvements. The optimal hyperparameters will

be added, identified through GridSearchCV. The tables demonstrate the MAE, RMSE,

and R2 score, and the respective improvements compared to the baseline. The figures,

11 to 17, illustrate how the models perform compared to the baseline over time, where

the y-axis represents the MAE and the x-axis is each month of 2024.

5.1 Random Forest

The following section shows how the RF model performs compared to the baseline

values.

Parameter Value

n estimators 1000

max depth 40

min samples split 2

min samples leaf 1

Table 4 The optimal set of hyperparameters for RF, determined by GridSearchCV.

Metric Value Baseline Value Improvement (%)

MAE 5.70 days 12.53 days 54.5%

RMSE 9.41 days 22.81 days 58.7%

R2-score 0.75 -0.48 –

Table 5 This table shows how the RF model performed, using MAE, RMSE, and R2

as evaluation metrics. Percentage improvement is included only for MAE and RMSE,

since R2 measures model fit and not error, making percentage improvement inappropri-

ate.

The RF model achieved a MAE of 5.70 days, which is a 54.5% reduction compared

to the baseline value of 12.53 days. RMSE decreased by 58.7%, indicating a substantial

overall reduction in prediction error. The R2-score of 0.75 suggests that the model fits

the data well. While its performance is strong, the RF model shows higher errors than

both XGBoost and the FNN.

37

5 Results

Figure 11 Model prediction error compared to the baseline error. MAE was used to

compare the model predictions to the current lead time estimations. A lower MAE

indicates better model performance.

Figure 12 The figure presents the results from the RF in comparison to the agreed

lead time. The model residuals (blue) are more centered around zero, than the agreed

lead time residuals (orange). Indicating the model outperforms the baseline in terms of

accuracy and reliability.

38

5 Results

5.2 XGBoost

This section will visualize and explore the results gained from the conducted experi-

ments.

Parameter Value

n estimators 1000

max depth 10

learning rate 0.036

subsample 0.8

colsample bytree 0.9

Table 6 The optimal set of hyperparameters for XGBoost according to GridSearchCV.

Metric Value Baseline Value Improvement (%)

MAE 5.07 days 12.53 days 59.6%

RMSE 8.69 days 22.81 days 61.9%

R2-score 0.79 -0.48 –

Table 7 Metric values when using XGBoost to make predictions. Percentage improve-

ment is shown for error metrics only.

The XGBoost model achieved a MAE of 5.07 days, reducing the baseline error by

59.6%. It also obtained the lowest RMSE among all models at 8.69 days, which is an

improvement of 61.9% compared to the baseline. The R2-score resulted in 0.79, indi-

cating a strong correlation between predicted and actual lead times. The results gained

from the experiment demonstrated that XGBoost provides a significant performance

increase over the current fixed lead time estimations provided by the suppliers.

39

5 Results

Figure 13 Visualization of the performance of XGBoost compared to the baseline per-

formance.

Figure 14 Smoothed residual distribution for the XGBoost model compared to the

agreed lead time estimates. The model outperforms the baseline estimates, as the dis-

tribution is more tightly centered around zero. This indicates the model provide more

accurate and consistent predictions.

40

5 Results

5.3 Neural Network

In this section the results from the FNN model will be explored.

Parameter Value

Learning Rate 0.001

Batch Size 256

Hidden Layer 1 128

Hidden Layer 2 128

Dropout 0.1

Table 8 The optimal set of hyperparameters for FNN according to GridSearchCV.

Metric Value Baseline Value Improvement (%)

MAE 4.52 days 12.53 days 63.7%

RMSE 9.00 days 22.81 days 59.8%

R2-score 0.76 -0.48 –

Table 9 Metric values when using FNN to make predictions. Percentage improvement

is shown for error metrics only.

The FNN achieved the lowest MAE among the evaluated models, with a value of

4.52 days compared to the baseline of 12.53 days, resulted in a 63.7% reduction. The

RMSE was also significantly improved, decreasing from 22.81 to 9.00 days, while the

R2 score of 0.76 indicates a strong fit between the model predictions and the actual val-

ues. These results suggest that the FNN consistently outperforms the baseline approach

in predicting lead times across the dataset.

41

5 Results

Figure 15 Visualization of the performance of FNN compared to the baseline perfor-

mance.

Figure 16 Smoothed distribution of residuals for the FNN model and the supplier pro-

vided lead time estimates. As is visualized, the model residuals (blue) are closely cen-

tered around zero, indicating a high prediction accuracy and lower variance compared

to the broader distribution of the agreed lead time residuals (orange).

42

5 Results

5.4 Overall Performance

This section summarizes the overall performance of the three models. The MAE is the

primary metric of comparison, while RMSE and R2 are also investigated to provide

additional insights.

Model MAE MAE Improv. (%) RMSE RMSE Improv. (%) R
2-score

FNN 4.52 days 63.7% 9.00 days 59.8% 0.76

XGBoost 5.07 days 59.6% 8.69 days 61.9% 0.79

RF 5.70 days 54.5% 9.41 days 58.7% 0.75

Baseline 12.53 days – 22.81 days – -0.48

Table 10 Comparison of model performance metrics. Baseline values are shown for

reference. Percentage improvement is shown only for error metrics.

Figure 17 This image illustrates the overall performance of the models compared to

baseline predictions. As can be seen, FNN is the best performing model.

43

6 Discussion

6 Discussion

The objective of this thesis is to explore the feasibility and effectiveness of implementing

ML to predict supplier lead times, with the end goal of making the supply chain more

predictable and reliable. Three models are chosen, RF, XGBoost, and FNN, based on

previous research done within the subject. They are developed and evaluated against

baseline lead time estimations currently used by the company.

The results demonstrate that all ML models utilized within the bounds of this thesis

significantly outperform the baseline estimations across all tested metrics. With regard

to MAE, the FNN performs the best with a MAE-score of 4.52 days, marking an im-

provement of 63.7% over the baseline estimations. RF and XGBoost outperform the

baseline by 54.5% and 59.6% respectively.

The performance improvements gained from the three models confirm the first re-

search question: ML models can predict actual lead times with a high accuracy using

historical and contextual data. These insights provide a clearer understanding of how

the supply chain is likely to behave as global supply chains recover from the pandemic,

where early or late deliveries can significantly affect the efficiency and cost of pro-

duction systems. By minimizing forecasting errors, companies may balance inventory

levels with demand to reduce the risk of material shortages, while avoiding excess in-

ventory levels.

Regarding the second research question, the evaluation of the models reveal that all

three of them are viable options for regression tasks in supply chain forecasting. The

FNN model outperforms both tree-based models, suggesting the underlying nonlinear

relationships in the data are better captured by the FNN. This is likely due to FNNs

ability to capture complex, nonlinear relationships in the data that tree-based models

may struggle to find. Supplier lead times are affected by a wide range of factors [3],

such as order quantity, product type, supplier reliability, and global contexts, which

may act in ways which are hard to capture with hierarchical or additive models. The

flexibility of FNNs enables it to learn subtle patterns and relationships in variables [24],

resulting in more accurate predictions, especially with a sufficiently large dataset.

XGBoost performs better than RF, likely due to its advanced gradient boosting al-

gorithm and built-in regularization [39]. The difference between the FNN model and

XGBoost model is 10.85% in terms of MAE, so in this case the FNN’s result is better.

However, in terms of RMSE, XGBoost performs 3.44% better than the FNN. In this

thesis, MAE is chosen as the primary evaluation metric due to the easily understood re-

sults. While RMSE penalizes larger errors more heavily, it does not offer the same level

of interpretability in this case as MAE, which represents the average prediction error in

the same units as the target variable [29]. This makes it easier for stakeholders without a

technical background to understand the performance of the models. Using MAE allows

the results of the models to become directly actionable as the company uses the same

unit, days, when analyzing lead times. As a result of focusing on the MAE, the recom-

44

6 Discussion

mended model, purely based on the evaluation, is using a FNN for predicting supplier

lead times.

However, using a FNN can be computationally expensive [41], and requires careful

hyperparameter tuning and large datasets to perform well. This makes it less practical

in environments where data or computational resources are limited [37]. However, RFs

and XGBoost models are less complex to interpret and easier to deploy. They also offer

the ability to provide feature importance, which can aid in decision-making. Therefore,

although the FNN out-performed the rest, XGBoost and RF remain strong alternatives

for situations that require easy implementation and feature transparency.

6.1 Future Work

While the models in this thesis showed strong performance, there are several oppor-

tunities for further research and improvements. This thesis limited the number of ML

algorithms to three, FNN, RF, and XGBoost, to keep the scope more manageable. Fu-

ture work might involve ML algorithms such as LightGBM [42], CatBoost [43], or

more advanced FNN architectures, which could offer improved results and efficiency.

Second, while the provided dataset contains a sufficient amount of data [37], additional

features would be necessary to train a more powerful and accurate model. These fea-

tures may include global logistics indicators, global financial status, and more detailed

supplier production data. Finally, although data from 2022 to 2024 is available, this

thesis focused exclusively on 2024 due to the unpredictability in lead times during the

years affected by the global pandemic. However, future work could explore the use of

historical data from earlier years to identify long-term patterns.

45

7 Conclusion

7 Conclusion

This thesis explored the possibility of using ML models to predict the actual lead times

of external suppliers. The historical data, consisting exclusively of order and product

data, was used to train three models: RF, XGBoost and a FNN. Each model significantly

outperforms the existing baseline estimations, with the FNN achieving the lowest MAE

of 4.52 days, representing a 63.7% improvement. This result underscores the potential

of using deep learning techniques to capture the complex patterns in supply chains.

The results obtained in this thesis reinforce the findings presented in section 2, Litera-

ture Review. Using ML models can significantly enhance a company’s ability to forecast

lead times, leading to more informed decision-making and reducing operational ineffi-

ciencies. The results highlight the value of historical and contextual data, while also

emphasizing the importance of model selection, feature selection, and hyperparameter

tuning. This work serves as a foundation for future studies that may incorporate larger

datasets, alternative features, and additional ML models which might result in a more

robust and accurate supply chain forecasting model.

46

References

References

[1] Queiroz MM, Ivanov D, Dolgui A, Fosso Wamba S. Impacts of epidemic out-

breaks on supply chains: mapping a research agenda amid the COVID-19 pan-

demic through a structured literature review. Springer Nature Link. 2020;319.

Available from: https://link.springer.com/article/10.1007/s10479-020-03685-7.

[2] Olhager J. Produktionsekonomi: principer och metoder för utformning, styrning

och utveckling av industriell produktion. 2nd ed. Lund, Sverige: Studentlitteratur;

2013.

[3] Raj A, Mukherjee AA, Lopes de Sousa Jabbour AB, Srivastava SK. Supply

chain management during and post-COVID-19 pandemic: Mitigation strategies

and practical lessons learned. Journal of business research. 2022;142. Available

from: https://doi.org/10.1016/j.jbusres.2022.01.037.

[4] Steinberg F, Burggräf P, Wagner J, Heinbach B, Sassmannshausen T, Brin-

trup A. A novel machine learning model for predicting late supplier de-

liveries of low-volume-high-variety products with application in a German

machinery industry. Supply Chain Analytics. 2023;1. Available from:

https://www.sciencedirect.com/science/article/pii/S294986352300002X.

[5] Struder S, Bui TB, Drescher C, Hanuschkin A, Winkler L, Peters S, et al. To-

wards CRISP-ML(Q): A Machine Learning Process Model with Quality Assur-

ance Methodology. Machine Learning and Knowledge Extraction. 2021;3:392-

413. Available from: https://arxiv.org/abs/2003.05155.

[6] Lingitz L, Gallina V, Ansari F, Gyulai D, Pfeiffer A, Sihn W, et al. Lead

time prediction using machine learning algorithms: A case study by a

semiconductor manufacturer. Procedia CIRP. 2018;72. Available from:

https://www.sciencedirect.com/science/article/pii/S2212827118303056.

[7] Mekhaldi RN, Caulier P, Chaabane S, Chraibi A, Piechowiak S. Using Machine

Learning Models to Predict the Length of Stay in a Hospital Setting. In: Advances

in Intelligent Systems and Computing. Springer Nature Switzerland; 2020. p. 202-

11. Available from: https://www.researchgate.net/publication/341449887.

[8] Zaghdoudi MA, Hajri-Gabouj S, Ghezail F, Darmoul S, Varnier C, Zer-

houni N. Collaborative and Integrated Data-Driven Delay Prediction and

Supplier Selection Optimization: A Case Study in a Furniture Indus-

try. Computers Industrial Engineering. 2024;197:21. Available from:

https://www.sciencedirect.com/science/article/pii/S0360835224007113.

47

References

[9] Öijar Jansson A. Estimating Real Estate Selling Prices using Multimodal Neural

Networks. KTH Royal Institute of Technology; 2023.

[10] Chopra S, Meindl P. Supply Chain Management: Strategy, Planning, and

Operation. 6th ed. Pearson Education Limited; 2019. Available from:

https://www.pearson.com/en-us/subject-catalog/p/supply-chain-management-

strategy-planning-and-operation.

[11] Vandeput N. Data Science for Supply Chain Forecast-

ing. 2nd ed. De Gruyter; 2021. Available from:

https://www.degruyterbrill.com/document/doi/10.1515/9783110671124/.

[12] Handfield R, Linton T. Flow: How the Best Supply Chains Thrive. University of

Toronto Press; 2022.

[13] Tang CS, Sodhi MS. Managing Supply Chain Risk. 2012th ed. International Series

in Opeartions. Springer; 2012. Available from: https://www.statlearning.com.

[14] Burggräf P, Wagner J, Heinbach B, Steinberg F. Machine Learning-Based

Prediction of Missing Components for Assembly – a Case Study at an

Engineer-to-Order Manufacturer. IEEE Access. 2021;9. Available from:

https://ieeexplore.ieee.org/document/9416418.

[15] Müller AC, Guido S. Introduction to Machine Learning with Python. 1st ed.

Springer Texts in Statistics. O’Reilly Media, inc.; 2017.

[16] Lindholm A, Wahlström N, Lindsten F, Schön TB. Machine Learning - A First

Course for Engineers and Scientists. Cambridge University Press; 2022. Available

from: https://smlbook.org.

[17] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer;

2017. Available from: https://hastie.su.domains/ElemStatLearn/.

[18] Sutton RS, Barto AG. Reinforcement Learning: An Introduction. 1st ed. MIT

Press; 2018.

[19] Jiang T, Gradus JL, Rosellini AJ. Supervised machine learn-

ing: A brief primer. Behavior Therapy. 2020;51. Available from:

https://doi.org/10.1016/j.beth.2020.05.002.

[20] Ibrahim M. Evolution of Random Forest from Decision Tree and

Bagging: A Bias-Variance Perspective. Dhaka University Jour-

nal of Applied Science and Engineering. 2023;7. Available from:

https://www.sciencedirect.com/science/article/pii/S2212827118303056.

48

References

[21] Natekin A, Knoll A. Gradient boosting machines, a tuto-

rial. Frontiers in Neurorobotics. 2013;7. Available from:

https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021/full.

[22] Bentéjac C, Csörgo A, Martı́nez-Muñoz G. A Comparative Analysis of XGBoost.

CoRR. 2019;abs/1911.01914. Available from: https://arxiv.org/abs/1911.01914.

[23] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. arXiv preprint

arXiv:160302754. 2016. Available from: https://arxiv.org/abs/1603.02754.

[24] Nielsen MA. Neural Networks and Deep Learning. Determination Press; 2015.

Available from: http://neuralnetworksanddeeplearning.com/.

[25] McInerney A, Burke K. A Statistical-Modelling Approach to Feedforward Neu-

ral Network Model Selection. Statistical Modelling. 2024;5. Available from:

https://doi.org/10.1177/1471082X241258261. Available from: https://arxiv.org/

abs/2207.04248.

[26] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. Available

from: http://www.deeplearningbook.org.

[27] Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep learning: A

comprehensive survey and benchmark. Neurocomputing. 2022;503. Available

from: https://www.sciencedirect.com/science/article/pii/S0925231222008426.

[28] Hagan MT, Demuth HB, Beale MH, De Jesús O. Neural Network Design; 2017.

Available from: https://hagan.okstate.edu/nnd.html.

[29] Terven J, Cordova-Esparza DM, Romero-González JA, Ramı́rez-Pedraza A,

Chávez-Urbiola EA. A comprehensive survey of loss functions and met-

rics in deep learning. Springer Nature. 2025;58. Available from:

https://link.springer.com/article/10.1007/s10462-025-11198-7.

[30] Torralba A, Isola P, Freeman WT. Foundations of Computer Vision. Adaptive

Computation and Machine Learning series. MIT Press; 2024.

[31] James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning:

with Applications in R. Seventh printing ed. Springer Texts in Statistics. Springer;

2013. Available from: https://www.statlearning.com.

[32] Géron A. Hands-on Machine Learning with Scikit-Learn, Keras TensorFlow.

O’Reilly Media, Inc; 2019.

49

https://arxiv.org/abs/2207.04248
https://arxiv.org/abs/2207.04248

References

[33] Kotsiantis SB, Kanellopoulos D, Pintelas PE. Data Preprocessing for Supervised

Learning. International Journal of Computer Science. 2006;1. Available from:

https://www.researchgate.net/publication/228084519.

[34] Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A sur-

vey on missing data in machine learning. Journal of Big Data. 2021;8. Avail-

able from: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-

021-00516-9.

[35] Shumway RH, Stoffer DS. Time Series Analysis and Its Applications. Springer;

2006. Available from: https://link.springer.com/book/10.1007/978-3-031-70584-

7.

[36] Bishop CM. Pattern Recognition and Machine Learning. Springer; 2006. Avail-

able from: https://link.springer.com/book/9780387310732.

[37] Alwosheel A, van Cranenburgh S, Chorus CG. Is your dataset big enough?

Sample size requirements when using artificial neural networks for discrete

choice analysis. Journal of Choice Modelling. 2018;28:167-82. Available from:

https://www.sciencedirect.com/science/article/pii/S1755534518300058.

[38] Scikit-learn Developers. RandomForestRegressor — scikit-

learn documentation; 2025. Available from: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html.

[39] XGBoost Developers. XGBoost Parameters Documentation; 2025. Available

from: https://xgboost.readthedocs.io/en/stable/parameter.html.

[40] PyTorch Developers. torch.optim — PyTorch 2.1 Documentation; 2025. Available

from: https://pytorch.org/docs/stable/optim.html.

[41] Thompson NC, Greenewald K, Lee K, Manso GF. Deep Learning’s Diminishing

Returns. IEEE Spectrum. 2020. Available from: https://spectrum.ieee.org/deep-

learning-computational-cost.

[42] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A

Highly Efficient Gradient Boosting Decision Tree. 2017;30. Available from:

https://dl.acm.org/doi/10.5555/3294996.3295074.

[43] Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbi-

ased boosting with categorical features. CoRR. 2017;abs/1706.09516. Available

from: http://arxiv.org/abs/1706.09516.

[44] Ajagekar A. Adam; 2021. Available from:

https://optimization.cbe.cornell.edu/index.php?title=Adam.

50

References

[45] Kingma DP, Ba JL. ADAM: A METHOD FOR STOCHAS-

TIC OPTIMIZATION. Springer Nature. 2017;9. Available from:

https://arxiv.org/abs/1412.6980v8?hl=pl.

[46] Salehin I, Kang DK. A Review on Dropout Regularization Approaches for Deep

Neural Networks within the Scholarly Domain. MDPI. 2023;12. Available from:

https://www.mdpi.com/2079-9292/12/14/3106.

51

A EXtreme Gradient Boosting

A EXtreme Gradient Boosting

Much like the RF algorithm, gradient boosting algorithms are based on decision trees.

XGBoost is a scalable and efficient implementation of gradient boosting. While tra-

ditional gradient boosting builds an ensemble of weak models sequentially, XGBoost

implements several engineering and algorithmic optimizations [22], like regularization,

parallel tree construction, and efficient handling of sparse data.

From a mathematical perspective, XGBoost is a powerful implementation of gradient

boosting designed for efficiency and scalability [22]. Much like other gradient boosting

algorithms it builds an additive model [23]. The final prediction is the sum of base

learners;

ŷi = ϕ(xi) =
K
∑

k=1

f(xi), fk ∈ (F), (A.1)

In this context, F =
{

f(x) = wq(x) | q : Rm → T , w ∈ R
T
}

, and each f(x) repre-

sents an individual regression tree. q(x) defines the structure of the tree by assigning an

x to a leaf index, and w determines what output value the model will produce. Each tree

contains T leaves. The output of f(x) which is a weighted sum of the basis functions,

can be used as a prediction. The main objective is to find the ϕ(xi) which minimizes the

loss function:

J(f(X)) =
1

n

n
∑

i=1

L (yi, f(xi)) (A.2)

Where L represents some differentiable loss function. For regression tasks, the most

popular choice would be MSE, given by L(y, ŷ = (y − ŷ)2.
However, when using XGBoost a regularization term is implemented into the objec-

tive function to avoid overfitting and improve generalization [23]. This term penalizes

model complexity by punishing deep trees and extreme leaf weights. The final objec-

tive value represents the total loss of all trees, along with a penalty term for each tree

to prevent overfitting [22]. To minimize the regularized objective function one uses the

formula:

L(ϕ) =
n

∑

i=1

ℓ(ŷi, yi) +
K
∑

k=1

Ω(fk) (A.3)

The regularization term promotes simpler trees and thereby reducing overfitting by

implementing the follow penalty term:

Ω(f) = γT +
1

2
λ∥w∥2 (A.4)

52

A EXtreme Gradient Boosting

As in formula (A.1), T represents the number of leaves in the tree, w is the vector

of leaf scores, γ is a parameter which regulates the number of leaves, while λ penalizes

large leaf weights.

Since it is computationally unfeasible to directly optimize the space of trees, XG-

Boost uses the same additive training method as Gradient Boosting, where the trees are

added sequentially to improve the errors of the previous tree[23]. At iteration k, a new

function fk is greedily added, that minimizes the penalized objective the most:

L(t) =
n

∑

i=1

l
(

yi, ŷ
(k−1)
i + fk(xi)

)

+ Ω(fk) (A.5)

To efficiently approximate the loss function, a second-order Taylor approximation is

used:

L(k) ≈
n

∑

i=1

[

l
(

yi, ŷ
(k−1)
i

)

+ gifk(xi) +
1

2
hif

2
k (xi)

]

+ Ω(fk) (A.6)

Here, formula (A.7) represents the gradient (first derivative)

gi =
∂

∂ŷ
(k−1)
i

l
(

yi, ŷ
(k−1)
i

)

(A.7)

and the following formula, (A.8) is the Hessian (second derivative)

hi =
∂2

∂ŷ
(k−1) 2
i

l
(

yi, ŷ
(k−1)
i

)

(A.8)

The goal here is to optimize fk. Since the constant term, l
(

yi, ŷ
(k−1)
i

)

does not

depend on fk, it can simply be ignored. This simplifies the objective to:

L̃(k) =
n

∑

i=1

[

gifk(xi) +
1

2
hif

2
k (xi)

]

+ Ω(fk) (A.9)

After simplifying the objective function, the various instances can be summed based

on the leaf node they fall into. By grouping them together, the optimization becomes

more computationally efficient [23]. The set Ij = {i|q(xi) = j} gathers every sample

that results in leaf j, and q(xi) represents the function which assigns each input to its

respective leaf. This grouping results in:

L̃(t) =
T
∑

j=1









∑

i∈Ij

gi



wj +
1

2





∑

i∈Ij

hi + λ



w2
j



+ γT (A.10)

53

B Gradient Descent

To find the optimal weight w∗

j for every leaf j can be calculated with the following

formula:

w∗

j = −
∑

i∈Ij
gi

∑

i∈Ij
hi + λ

(A.11)

Once the optimal value of w∗

j for each leaf has been found by using formula (A.11),

they can be plugged into the objective function. This makes the value of the objective

function only dependent on:

L̃(t)(q) = −1

2

T
∑

j=1

(

∑

i∈Ij
gi

)2

∑

i∈Ij
hi + λ

+ γT. (A.12)

Formula (A.12) gives the tree a score which represents the quality of the tree struc-

ture, in other words it evaluates the tree splits. To help the algorithm decide whether a

node should be split, and where the split should be done, the following formula is used:

Lsplit =
1

2

[
(
∑

i∈IL
gi
)2

∑

i∈IL
hi + λ

+

(
∑

i∈IR
gi
)2

∑

i∈IR
hi + λ

−
(
∑

i∈I gi
)2

∑

i∈I hi + λ

]

− γ (A.13)

Here, IL and IR are the instance sets assigned to the left and right children after the

split, and I = IL ∪ IR represents the parent node [23].

B Gradient Descent

Gradient Descent is an optimization method that iteratively improves a model’s pa-

rameters by minimizing the loss function. At each step, the algorithm improves the

parameters in the opposite direction of the loss function’s gradient [30]. In the full-

batch variant of gradient descent, the algorithm computes the gradients for the complete

dataset before updating the model parameters. It is defined as [30]:

θi+1 = θi − η∇θiJ (B.1)

where η > 0 represents the learning rate, and ∇θi−1
J is the gradient with respect

to the model parameters. By moving in the opposite direction of the gradient, or in

other words, moving in the steepest descent, the algorithm decreases the loss function

value [24]. Calculating the gradients over the full dataset is computationally expensive,

and results in a model which will scale poorly. To tackle the scalability issue, SGD is

commonly used.

54

D Adaptive Moment Estimation

C Stochastic Gradient Descent

As previously mentioned in section 3.5.3, SGD is a widely used optimization algorithm

which is used to train ML models, particularly FNNs. It is a variant of the gradient de-

scent algorithm, which introduces stochastic elements by estimating the gradient using

a subset of the dataset at each step [30].

In supervised ML, a dataset D = {(xi, yi)}ni=1 contains pairs of input data and re-

spective label, where xi is a specific input, and yi is the corresponding label [24]. The

overall loss function J(θ), which represents the average loss over the complete dataset,

can be expressed as:

J(θ) =
1

n

n
∑

i=1

Ji(θ) (C.1)

where J(θ) is the loss for iteration i.

In standard gradient descent, the gradient of the loss function over the complete

dataset is computed. This is computationally expensive for large datasets. To make the

algorithm more efficient, SGD utilizes mini-batches, which can be described as small

randomly selected subsets of the complete dataset, to estimate the gradient [30]. Once

the estimate of a mini-batch has been computed, the parameters are updated. Therefore,

the convergence of SGD is typically faster than that of gradient descent. The update

equation for a mini-batch with m-number of samples is:

θi+1 = θi − η · 1

m

m
∑

j=1

∇θJbj(θ) (C.2)

where {b1, b2, . . . , bm} refers to a mini-batch sampled from D, and η is the learning

rate.

SGD adds some noise into the parameter updates, which might help the model avoid

getting stuck in local minima and saddle points [30]. It also makes computation time

more sensitive to the chosen learning rate.

D Adaptive Moment Estimation

Adam is an optimization algorithm widely used for FNNs. It’s a highly popular algo-

rithm due to its robustness and efficiency. It combines the advantages of two gradient-

based optimization methods [44]: Root Mean Square Propagation (RMSP) and Mo-

mentum. Adam keeps track of the average of past gradients and the average of their

squared values, gradually the importance of past values are decreasing [45]. This gives

the algorithm a way of adjusting the learning rate for each parameter automatically.

55

E Dropout

At each iteration, the first and second moment are computed using the following

equations [44]:

mt = β1mt−1 + (1− β1)∇θJ(θt) (D.1)

where mt is computing the first moment, and where:

vt = β2vt−1 + (1− β2)(∇θJ(θt))
2 (D.2)

vt is calculating the second moment. β1 and β2 are hyperparameters that controls at

what rate the importance of past values are decreasing for the two moments. Typically

mt and vt are biased towards zero in the initial steps of the algorithm as the hyperparam-

eters are typically set to a value very close to 1. Therefore, Adam uses bias-corrected

estimates [45]:

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(D.3)

The parameter update rule is defined as:

θt+1 = θt − η · m̂t√
v̂t + ϵ

(D.4)

where η represents the learning rate, ϵ is a small constant added to prevent division

by zero [45]. Adam is strong when it comes to problems which involves noisy and

sparse gradients, and is known to have a quick convergence while needing minimal

hyperparameter tuning [44].

E Dropout

Dropout is a widely used regularization technique in FNNs that helps reduce overfitting

and improve generalization. The method works by randomly deactivating a subset of

neurons during each training iteration, which prevents the model from depending too

heavily on specific nodes [46]. Instead, the model is forced to learn more robust and

redundant

This technique can be interpreted as training an ensemble of smaller sub-networks

within the same overall architecture. At each training iteration, a different subset of

neurons is deactivated, leading to small variations in the network structure [46]. When

making predictions on new data, all neurons are active, and the outputs are appropriately

scaled to reflect the expected values from training.

Dropout is commonly applied in the fully connected layers of FNNs and has been

shown to significantly reduce overfitting, especially in models with a large number of

parameters [46].

56

	Introduction
	Background
	Problem Description
	Explanation of Key Concepts
	Purpose
	Goal
	Research Questions
	Methodology
	Delimitations

	Literature Review
	Theory
	Supply Chain Lead Times and Their Impact
	Machine Learning
	Supervised Machine Learning
	Tree-Based Methods
	Decision Trees
	Random Forests
	Gradient Boosting
	eXtreme Gradient Boosting

	Feedforward Neural Networks
	Activation Functions
	Rectified Linear Unit
	Training a Neural Network
	Backpropagation

	Early Stopping
	K-fold Cross-Validation
	Model Evaluation
	Mean Squared Error
	Root Mean Squared Error
	Mean Absolute Error
	Coefficient of Determination

	Method
	Acquisition and Exploration of Data
	Preprocessing
	Handling Inconsistencies
	Time-frame Filtering
	Missing Values
	Frequency Threshold
	Outlier Detection
	Feature Engineering
	Categorical and Textual Features
	Feature Reduction

	Selected Features for Model Training
	Model Selection
	Model Training
	Data Splitting
	Model Creation
	Hyperparameter Tuning
	Hyperparameters - Random Forest
	Hyperparameters - XGBoost
	Neural Network

	Results
	Random Forest
	XGBoost
	Neural Network
	Overall Performance

	Discussion
	Future Work

	Conclusion
	Appendices
	EXtreme Gradient Boosting
	Gradient Descent
	Stochastic Gradient Descent
	Adaptive Moment Estimation
	Dropout

